
SG24-5340-00

International Technical Support Organization

http://www.redbooks.ibm.com

RS/6000 SP System Performance Tuning

Hajo Kitzhöfer, Andrew Dunshea, Frank Mogus

RS/6000 SP System Performance Tuning

May 1999

SG24-5340-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (May 1999)

This edition applies to Version 2, Release 4 and Version 3, Release 1 of the POWERparallel System
Support Programs for use with AIX 4.3.1 and AIX 4.3.2

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. JN9B Mail Station P099
522 South Road
Poughkeepsie, New York 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix D, “Special Notices” on page 279.

Take Note!

Contents

Figures .ix

Tables . xiii

Preface . xv
The Team That Wrote This Redbook . xv
Comments Welcome . xvi

Chapter 1. Introduction . 1
1.1 System Performance Tuning . 1
1.2 Why Tuning? . 1
1.3 When to Tune?. 2
1.4 How Much Tuning Is Enough? . 2

Part 1. RS/6000 SP Basics . 3

Chapter 2. RS/6000 SP Overview . 5
2.1 SP Topology Overview . 5

2.1.1 SP Hardware . 7
2.1.2 SP Software . 9

2.2 Communication Paths . 9
2.3 System Partitioning . 10
2.4 Homogenous versus Consolidated System. 10
2.5 Logical versus Physical View . 11

Chapter 3. Network Topology . 13
3.1 The Ethernet Network . 13
3.2 The Switch Network . 15

Chapter 4. TCP/IP Overview . 21
4.1 Communication Subsystem Memory Management 23
4.2 Socket Layer . 28
4.3 UDP and TCP Functions . 31

4.3.1 UDP Layer . 31
4.3.2 TCP Layer . 33

4.4 Internet Protocol Layer . 35
4.5 LAN Adapters and Device Drivers . 36
© Copyright IBM Corp. 1999 iii

Part 2. SP System Performance Tuning . 39

Chapter 5. SP Performance Tuning Cycle . 41

Chapter 6. SP Network Tunables . 45
6.1 Initial Considerations . 45

6.1.1 General Tuning Recommendations. 45
6.1.2 Consolidated System Challenges . 46
6.1.3 System Topology Considerations . 46

6.2 AIX Network Tunables . 47
6.2.1 TCP Maximum Segment Size (MSS) . 52
6.2.2 Subnetting and the subnetsarelocal . 52

6.3 SP System-Specific Tuning Recommendations 54
6.3.1 Managing Tunable SP Parameters . 57
6.3.2 Initial Settings of SP Tunables . 58

6.4 Tuning the SP Network for Specific Workloads. 59
6.4.1 Tuning for Development Environments . 59
6.4.2 Tuning for Scientific and Technical Environments. 60
6.4.3 Tuning for Commercial and Database Environments 61
6.4.4 Tuning for Server Environments . 63
6.4.5 Summary of Workload Tunables . 65

Chapter 7. Adapter Tuning . 67
7.1 Maximum Transmission Unit (MTU) . 67
7.2 Maximum Segment Size (MSS) . 67
7.3 TCP Data Flow . 68
7.4 TCP Sliding Window. 70
7.5 Adapter Queue Size . 74

7.5.1 Transmit and Receive Queues . 76
7.5.2 Displaying Adapter Queue Settings . 77
7.5.3 Changing Adapter Settings . 78
7.5.4 Adapter Tuning Recommendations . 79

7.6 Switch Adapter Tuning . 79
7.6.1 Switch Adapter Pools . 79
7.6.2 Switch Pool Allocation . 80
7.6.3 Switch Buffer Pool Allocation Considerations 82
7.6.4 Sizing Send and Receive Pool Requirements 82
7.6.5 Sample Switch Send Pool Size Estimate 85
7.6.6 Reducing Send/Receive Pool Requirements. 85

7.7 SP Ethernet Tuning . 86
7.8 Token-Ring Performance Tuning Recommendations 87
7.9 FDDI Performance Tuning Recommendations 87
7.10 ATM Performance Tuning Recommendations. 87
iv RS/6000 SP System Performance Tuning

7.11 HIPPI Performance Tuning Recommendations 88
7.12 Escon Interface Tuning. 88

Chapter 8. Global File Systems Tuning . 89
8.1 Network File System Tuning on the SP . 89

8.1.1 NFS Overview . 89
8.1.2 Large-Scale Environment Considerations 90
8.1.3 NFS Troubleshooting . 91
8.1.4 Checklist for NFS Tuning . 92
8.1.5 Dropped Packets . 92
8.1.6 Check for NFS UDP Socket Buffer Overflows 98
8.1.7 Number of NFS Daemons. 99
8.1.8 The nfso Command . 100
8.1.9 Mount Options That Affect Performance 105
8.1.10 Configuring Server Disk Usage. 106
8.1.11 Network Locking Performance Implications 106
8.1.12 NFS Version 3 Improvements . 107
8.1.13 How NFS v3 and TCP Work Together 109

8.2 Virtual Shared Disk Tuning . 109
8.2.1 Tunable Parameters Related to VSD . 111
8.2.2 Logical Volume Manager Tuning Considerations 111
8.2.3 SP Switch Considerations . 111
8.2.4 Buddy Buffers . 114
8.2.5 VSD Buffer Allocation . 115
8.2.6 The Cache Buffer . 115
8.2.7 Maximum I/O Request Size . 116
8.2.8 Request Blocks . 117
8.2.9 Virtual Shared Disk pbufs . 117
8.2.10 VSD Statistics. 118
8.2.11 Tuning Virtual Shared Disk Performance 121
8.2.12 Virtual Shared Disk Tuning Recommendations 122

8.3 General Parallel File System Tuning . 123
8.3.1 Planning for GPFS . 124
8.3.2 Configuration Considerations . 124
8.3.3 Estimating Node Count. 124
8.3.4 GPFS Use of Virtual Shared Disks . 126
8.3.5 Switch Tuning for GPFS . 126
8.3.6 GPFS Performance Tuning. 127
8.3.7 Additional GPFS Considerations. 128
8.3.8 GPFS Performance and Scaling . 128
8.3.9 Applications and Performance . 130
v

Chapter 9. Common SP Performance Problems 133
9.1 The Nagle Algorithm. 133
9.2 External Server Considerations . 136
9.3 Single-Server Multiple-Client Node Problems 138
9.4 Gateway or Router Node Problems . 141
9.5 Tuning the Control Workstation . 141

9.5.1 Change Control Workstation Maximum Default Processes 142
9.5.2 Change the Control Workstation Tunables 142

9.6 ARP Cache Tuning. 143
9.6.1 Updating the ARP Cache Size . 144
9.6.2 Determining the ARP Tuning Settings. 144
9.6.3 Detecting ARP Thrashing . 145
9.6.4 ARP Cache Problem Determination . 146

Chapter 10. ADSTAR Distributed Storage Manager (ADSM) Tuning . 147
10.1 SP Client Node Network Tunables . 147
10.2 SP Client Node ADSM Tunables . 148
10.3 SP ADSM Server Node Tunables . 148
10.4 Escon Gateway Node Tunables . 149
10.5 MVS ADSM Server Tunables . 149

Part 3. Performance Tools . 151

Chapter 11. IBM Performance Tools . 153
11.1 Overview . 153
11.2 Managing Memory Resources . 155

11.2.1 Monitoring Memory with vmstat . 156
11.2.2 Monitoring Memory with sar . 157
11.2.3 Monitoring Memory with lsps . 158
11.2.4 Monitoring Memory with ps . 159
11.2.5 Monitoring Memory with svmon . 160
11.2.6 Determining Memory Requirements with rmss 162
11.2.7 Tuning Memory with vmtune . 163
11.2.8 Tuning Memory with schedtune . 165

11.3 Managing CPU Resources . 166
11.3.1 Monitoring the CPU with vmstat . 167
11.3.2 Monitoring the CPU with time . 169
11.3.3 Monitoring the CPU Using ps . 170
11.3.4 Monitoring the CPU with sar . 171
11.3.5 Monitoring the CPU with iostat . 174
11.3.6 Checking Active CPUs Using cpu_state 175
11.3.7 Managing CPU Usage with nice and renice 176
11.3.8 Managing CPU Utilization with schedtune. 177
vi RS/6000 SP System Performance Tuning

11.4 Managing Input/Output Resources . 179
11.4.1 Monitoring I/O Using iostat . 179
11.4.2 Monitoring I/O Using lslv. 180
11.4.3 Monitoring I/O Using fileplace . 181
11.4.4 Monitoring I/O Using filemon. 183
11.4.5 Managing Fragmentation . 189
11.4.6 Tuning Kernel I/O Parameters . 191

11.5 Managing Network Resources . 194
11.5.1 Monitoring the Network Using Adapter Statistics. 195
11.5.2 Monitoring the Switch with vdidl2 or vdidl3 197
11.5.3 Monitoring the Network with netstat . 199
11.5.4 Monitoring Network Traffic Using iptrace 203
11.5.5 Monitoring the Network Using netpmon 205
11.5.6 Checking Network Adapter Settings Using lsattr 214
11.5.7 Tuning Network Parameters Using no. 215
11.5.8 Tuning NFS Network Parameters Using nfso 219
11.5.9 Tuning Network Switch Parameters Using chgcss 220

11.6 Investigation . 221
11.7 Performance Toolbox for AIX (PTX/6000). 222

11.7.1 PTX/6000 Installation . 224
11.7.2 Using PTX/6000 to Monitor an RS/6000 Cluster 226

11.8 Performance Toolbox Parallel Extensions (PTPE) 229
11.8.1 PTPE Installation . 229
11.8.2 Using PTPE to Monitor an RS/6000 SP Cluster 239

Chapter 12. Non-IBM Performance Tools . 243
12.1 The Real Time IBM RS/6000 AIX System Monitor 243
12.2 POWER2 Hardware Performance Monitoring 245
12.3 NetPerf. 247

12.3.1 TCP Stream Performance. 248
12.3.2 UDP Stream Performance . 249
12.3.3 TCP Request/Response Performance 250
12.3.4 UDP Request/Response Performance 250

12.4 ttcp Program. 251
12.5 Other Commercial Performance Monitor Sources 251

Appendix A. Performance Problem Checklist . 253

Appendix B. Hardware Details . 255
B.1 Node Types. 255
B.2 Roles of Nodes . 256
B.3 Communication Paths. 257
B.4 System Partitioning . 257
B.5 Node Selection Process . 258
vii

Appendix C. No Command Man Page . 261
C.1 Network Attributes . 262
C.2 Streams Tunable Attributes . 275
C.3 Examples . 278
C.4 Related Information . 278

Appendix D. Special Notices . 279

Appendix E. Related Publications . 283
E.1 International Technical Support Organization Publications 283
E.2 Redbooks on CD-ROMs . 283
E.3 Other Publications. 284

How to Get ITSO Redbooks . 285
IBM Redbook Fax Order Form . 286

List of Abbreviations . 287

Index . 289

ITSO Redbook Evaluation . 299
viii RS/6000 SP System Performance Tuning

Figures

1. Typical RS/6000 SP Environment . 7
2. Grouping Nodes by Classes of Service . 11
3. One Frame Ethernet Configuration . 14
4. 8-Frame Ethernet Configuration . 15
5. SP Switch Chip . 16
6. SP Switch Board . 17
7. SP 80-way System. 18
8. SP Switch Network with More Than 80 Nodes . 19
9. Switch Adapter. 20
10. TCP/UDP/IP Data Flow . 22
11. Cluster Chains . 24
12. netstat -m Output . 25
13. netstat -m with extendednetstat=1. 27
14. The Network Memory Pool . 28
15. Socket Layer . 29
16. Performance Tuning Cycle . 43
17. Subnet Addressing. 53
18. Inter-Subnet Fragmentation . 53
19. Displaying Network Options. 54
20. TCP Data Flow. 69
21. TCP Window Size . 69
22. TCP Sliding Window . 70
23. rfc1323 - TCP Extension . 72
24. Adapter Queue Overview. 75
25. MTU Ratio . 77
26. lsattr Command Output for an ATM Adapter . 78
27. Viewing Send and Receive Pool Buffer Sizes . 80
28. Switch Pool Allocation . 81
29. Output of the vdidl3 Command . 84
30. NFS Overview . 90
31. Dropped Packets and Server Overruns . 95
32. Dropped Packets Overrun (Client Side). 97
33. The nfso Command . 101
34. Virtual Shared Disk Implementation. 110
35. statvsd Command Output . 119
36. GPFS Overview . 123
37. GPFS Performance and Scaling on a 332 Mhz SMP Node. 129
38. netstat -I Command . 135
39. Calculating tcp Send/Receive Space Sizes . 137
40. Single-Server Multiple-Client Scenario . 139
© Copyright IBM Corp. 1999 ix

41. Sample setsockopt() Call . 140
42. ARP Customizations . 144
43. System Tuning Overview . 154
44. vmstat Output. 156
45. Monitoring Paging with sar. 158
46. Viewing Paging Space . 159
47. ps gvc Output. 159
48. Global Memory View . 160
49. Process Memory View . 161
50. CPU Monitoring with vmstat Output. 168
51. Checking CPU Utilization with Time . 170
52. Top 10 CPU Users Script. 170
53. Top 10 CPU Users. 171
54. CPU Utilization Report Using sar. 172
55. Monitoring CPU Queue Lengths with sar. 173
56. Monitoring CPU I/O Waits Using iostat -t. 175
57. Active CPU Report. 176
58. I/O Statistics since Boot Using iostat . 180
59. Logical Volume on Disk Sample . 181
60. File Placement within a Logical Volume . 182
61. Using filemon . 183
62. Identifying the Most Active Segments Using filemon 184
63. Translating Volume and inode to File Name . 184
64. Sample Script to Obtain File Name . 185
65. Identifying the Most Active Logical Volume Using filemon. 186
66. Identifying the Most Active Physical Volume Using filemon. 186
67. Investigating the I/O Performance Effect on VMM. 187
68. Investigating the I/O Performance of Logical Volumes 188
69. Investigating the I/O Performance of Physical Volumes 189
70. Querying State of Fragmentation within a File System 190
71. Network Adapter Statistics. 196
72. Switch Pool Statistics Using vdidl3 . 198
73. Viewing the Network Load Using netstat . 199
74. Using netstat to Find MTU Size . 201
75. Network Memory Buffer Allocation Statistics . 202
76. Network Connections. 203
77. Running iptrace . 203
78. First Transmission Block Captured Using iptrace 204
79. First Received Block Captured Using iptrace . 205
80. Using netpmon. 206
81. CPU Network Utilization by Processes . 207
82. CPU Network Utilization by FLIH . 208
83. CPU Network Utilization by SLIH Summary Report. 208
x RS/6000 SP System Performance Tuning

84. CPU Network Utilization by SLIH Detailed Report 209
85. Network Adapter Utilization Summary Report . 210
86. Network Adapter Utilization Detailed Report . 210
87. Network Transmission Summary Report . 211
88. Network Transmission Detailed Report . 211
89. Network Process Service Calls Summary Report 212
90. Network Process Service Calls Detailed Report 213
91. Utilization of Network by NFS Summary Report 214
92. Utilization of Network by NFS Detailed Report . 214
93. Listing Adapter Attributes with lsattr. 215
94. PTX/6000 Network Monitoring - Client/Server Model 223
95. PTX/6000 Monitoring Presentation Component Hierarchy 226
96. Monitoring a System Using PTX/6000 . 227
97. Example of an RS/6000 SP Frame Configuration 235
98. PTPE Node Hierarchy . 236
99. PTPE Performance Hierarchy Definition . 238
100.Installing a PTPE Performance Hierarchy. 238
101.Initializing a PTPE Performance Hierarchy . 239
102.Enabling PTPE Aggregate Data Collection . 239
103.Selecting PTPE Aggregate System Statistics . 240
104.Disabling PTPE Aggregate Data Collection . 241
105.monitor - Without Options . 244
106.monitor - Disk and Top Statistics. 245
107.rs2mon Output. 246
108.sp2flops Output . 247
109.RS/6000 SP Node Selection Based on Capacity 259
110.RS/6000 SP Node Selection Based on Performance 260
xi

xii RS/6000 SP System Performance Tuning

Tables

1. UDP Functions. 32
2. TCP Functions . 34
3. Software Development Tuning Parameters. 60
4. Scientific and Technical Environment Tuning Parameters 61
5. Commercial and Database Environment Tuning Parameters.. 62
6. Server Tuning Parameters. 64
7. Summary of Workload Tunables.. 65
8. Maximum Transmission Units . 67
9. Transmit Queue Size Examples . 76
10. vdidl3xx Commands. 83
11. Escon Interface Tuning Parameters. 88
12. GPFS Performance Test with 64 KB Read Requests 130
13. TCP/IP Pacing Degradation Window . 134
14. Control Workstation Network Adapter Queue Settings 141
15. Initial Control Workstation Parameters . 142
16. Default ARP Parameters in AIX. 144
17. Determining ARP Tuning Settings Based on the Number of Nodes 145
18. Determining ARP Tuning Settings Based on Number of IP Interfaces . . 145
19. ADSM Client Node Tuning Parameters . 147
20. ADSM Client Configuration File . 148
21. ADSM Server Node Tuning Parameters . 148
22. ADSM Server Configuration File . 148
23. Escon Gateway Node Tuning Parameters. 149
24. MVS ADSM Settings . 149
25. Thread Priority Calculation. 178
26. Tuning Read Ahead . 192
27. Documenting a PTPE Performance Hierarchy . 236
28. SP Nodes Overview. 255
© Copyright IBM Corp. 1999 xiii

xiv RS/6000 SP System Performance Tuning

Preface

The main tuning objectives for the RS/6000 SP are to improve performance,
response time, and resource utilization. While the objectives of performance
tuning for the RS/6000 SP are similar to those for a stand-alone RS/6000,
due to its design and architecture, the approach is, in some situations, the
opposite of how to tune a stand-alone system.

This redbook focuses on SP specific performance subjects. It is not meant as
an update or replacement for the AIX Performance Tuning Guide,
SR28-5930. This redbook tries to avoid overlaps with other performance
redbooks.

This redbook gives some general system recommendations and describes
specific tuning strategies for workloads, network interfaces, and file systems.
It provides hints and tips on the various factors and variables that can
enhance the performance of the system and applications and is essential
documentation for people who support the RS/6000 SP.

Some knowledge of RS/6000, RS/6000 SP, and the AIX operating system is
assumed.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Dr Hajo Kitzhöfer is an Advisory International Technical Support
Organization (ITSO) Specialist for RS/6000 SP at the Poughkeepsie Center.
He holds a Ph.D. degree in Electrical Engineering from the Ruhr-University of
Bochum (RUB). Before joining ITSO, he worked as an SP Specialist at the
RS/6000 and AIX Competence Center, IBM Germany. He has worked at IBM
for eight years. His areas of expertise include RS/6000 SP, SMP, and
Benchmarks. He now specializes in SP System Management, SP
Performance Tuning, and SP hardware.

Andrew Dunshea is a Performance Analyst from IBM New Zealand. He has
10 years of experience in application development. His areas of expertise
include object-oriented software development and analysis, systems
programming, and performance analysis.
© Copyright IBM Corp. 1999 xv

Frank Mogus is a Systems Consultant from Canada. He has several years of
UNIX experience and has worked with The Braegen Group for four years.

Thanks to the following people for their invaluable contributions to this project:

Bernard King-Smith
IBM PPS Lab Poughkeepsie

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “ITSO Redbook Evaluation” on page 299
to the fax number shown on the form.

• Use the online evaluation form found at: http://www.redbooks.ibm.com

• Send us a note at the following address:

redbook@us.ibm.com
xvi RS/6000 SP System Performance Tuning

Chapter 1. Introduction

This document is divided into three parts.

Part 1, "RS/6000 SP Basics," gives an overview of the SP hardware and
software. Since the SP is essentially a collection of workstations connected
by networks, tuning an SP system means primarily tuning these networks.
Therefore, this part also includes an overview of the SP network topology and
an introduction to TCP/IP.

Part 2, "SP System Performance Tuning," covers all tuning aspects of an SP.
Readers with SP and TCP/IP knowledge might want to skip Part 1 and start
Part 2.

Part 3, "Performance Tools," is a reference to AIX performance tools and
gives some pointers to, and information about, useful non-IBM performance
tools.

1.1 System Performance Tuning

As your SP system grows and gets more complex, performance monitoring
and tuning becomes a key issue. It is an issue that you need to deal with on
an ongoing basis through all the stages of your system’s life cycle: From
planning, to design, to testing, to production. The demand for performance
never stops. Even after a system is in production, you need to keep
monitoring and tuning and improving it as circumstances change.
Performance tuning is vital.

New technologies demand new types of tuning. With client-server and
distributed applications (mainly distributed databases in a commercial
environment), your applications now communicate over a network instead of
running on a single system.

As time goes by, more users use the system. The organization grows and
more applications and data are added. As users, data, and capabilities grow,
your system needs to get tuned so it can absorb the increased load and
continue to give the performance that is needed.

1.2 Why Tuning?

Tuning saves your organization money in several ways:
© Copyright IBM Corp. 1999 1

• A high-performance, well-tuned system produces faster response times.
This makes users more productive.

• A well-tuned system can delay the necessity of buying additional
equipment.

In addition to the financial benefits of performance tuning, there are human
benefits to consider. Nothing can be more frustrating for an employee who is
trying to be productive than having to wait for computing resources or dealing
with painfully slow response times.

1.3 When to Tune?

Too many people think of tuning as an add-on. They start tinkering when
users start complaining. That is not the proper approach.

Performance is a design goal, something to build into the system from the
beginning, not something that will be done when things go wrong, and time is
short. Also, performance tuning is never finished.

1.4 How Much Tuning Is Enough?

When do you know that you have tuned enough? Experience shows that
many sites tune too little, but that a few actually tune too much. Be sure not to
make too many changes at once because you will not know which of the
changes improved performance.

There comes a point when the system is in balance, and it is better not to
fiddle around with the settings when trying to achieve infinitesimally small
performance improvements.

Sometimes, improving performance in one area of the system degrades
performance in another. For example, tuning the switch network for optimal
performance for a parallel database may actually hurt the performance of
client-server applications, such as ADSM running on the same nodes.

You have to be careful about making changes once your system is in
production. For best results, always try to build a test environment and
monitor performance in this environment before making any changes to the
production system.
2 RS/6000 SP System Performance Tuning

Part 1. RS/6000 SP Basics
© Copyright IBM Corp. 1999 3

4 RS/6000 SP System Performance Tuning

Chapter 2. RS/6000 SP Overview

Before we start tuning the RS/6000 SP, we should know the base elements of
the system. This chapter gives an overview of the RS/6000 SP hardware and
software components.

2.1 SP Topology Overview

In December 1991, IBM built a second family of parallel products based on
the RS/6000 technology (the other is the System/390 line of parallel servers).
People inside and outside IBM were connecting their RS/6000 systems with
local area networks into clusters and using them in place of much more
expensive supercomputers. So, IBM chose this cluster approach as the basis
for development. The basic design objectives for the RS/6000 Scalable
POWERparallel System (SP) were:

General-purpose machine To be capable of handling a variety of workloads
and applications, not limited to parallel
computing, but also useful as a server
consolidation platform.

Common components To use common components, such as POWER2
processors, the AIX operating system, standard
networks, and others.

Fast interconnection To be a highly flexible and elegant switch
network for high-performance non-blocking
interconnections.

Because of these design goals, the SP is:

• Scalable

Being based on standard technology, the system provides incremental
growth for all resources including the number of processing nodes and
associated memory, disks, I/O, as well as switch bandwidth.

• Upgradable

Incorporating new technology in existing systems provides a growth path
without requiring a complete system replacement. Examples of new
technology are processor nodes, disks, and the switch, each of which can
be replaced independent of the other components.

• Highly Available
© Copyright IBM Corp. 1999 5

The system design incorporates high-availability characteristics, such as
redundant components, error detection and correction circuitry, and
advanced diagnostics.

• Manageable

Features, such as single point-of-control and hardware and system
monitoring, are used to maintain system administrator productivity.

The difference between a stand-alone RS/6000 and the RS/6000 SP is the
capability of the RS/6000 SP to perform as a parallel architecture machine. It
is a distributed memory computer, that is, all nodes have their own memory
as well as other I/O resources. The main component that can be shared in
this architecture is the SP Switch, which has the capability of transferring data
at more than 150 MBps per node. The RS/6000 SP is centrally managed from
a Control Workstation (CWS) with the Parallel Systems Support Program
(PSSP). Figure 1 shows a typical RS/6000 SP environment.
6 RS/6000 SP System Performance Tuning

Figure 1. Typical RS/6000 SP Environment

2.1.1 SP Hardware
This section describes the basic hardware components of the RS/6000 SP.

Frames

SP processor nodes are mounted in a frame. There are two types of frames:
A tall frame and a short (low-cost) frame. The tall frame consists of a
redundant power supply, while the low-cost frame has one power supply with
the option of adding a second one. The frames have drawers where the
nodes reside. A tall frame has the capability to hold eight drawers, while the
low-cost frame can hold four drawers. Each drawer can be further subdivided
into two slots. Below the bottom-most drawer in the frame is where the

External Disk
Node

Attached

Control Workstation
Systems
Managemen
Console

Wide

Thin Thin

High

Thin Thin

Wide

SP Switch
Internal Network
High Speeds

SP Router Node
Switch Router
Networks Clients
and Servers to
Nodes

Power
N+1
Hot Plug

Frame Control
Management1

Nodes
Processing
Units
Standalone
Servers
Occupy
Drawers in
Frame

Independent Node
S70/S7A
RS/6000 SP Overview 7

optional SP Switch board resides. The switch board does not occupy node
drawer space.

The frames communicate serially with the CWS through a frame supervisor
card. The frames can be interconnected to form a system of up to 512 nodes.
As soon as the number of nodes exceeds 80, additional switch boards,
referred to as Intermediate Switch Boards (ISBs), are cascaded to the Node
Switch boards effectively adding one more stage to the Switch network. For
more details, see Figure 8 on page 19. The ISBs are housed in a separate
frame; the total number of ISBs placed in this separate frame is eight. For
more information, see 3.2, “The Switch Network” on page 15.

Nodes

The basic building block of the RS/6000 SP is the processor node. These
nodes are usually housed in the frame, and, therefore, are called internal
nodes.

There are three different types of internal nodes:

• Thin Node - Uniprocessor or SMP occupies one slot (two per drawer).

• Wide Node - Uniprocessor or SMP occupies two slots or one drawer.

• High Node - SMP occupies two drawers.

In addition to the internal nodes, two kinds of external nodes are supported:
The dependent node and the independent extension node.

The RS/6000 SP Switch Router is currently the only incarnation of a
dependent node. This node combines the Ascend GRF with IBM RS/6000 SP
Switch Router Adapter to enable a fast direct network attachment to the
RS/6000 SP Switch (see Figure 1 on page 7).

An example of external independent nodes are the S70/S7A servers; these
64-bit SMP systems can be integrated into an RS/6000 SP (see Figure 1 on
page 7) using a PCI Switch Adapter for the connection to the SP Switch
network.

Control Workstation

The CWS is used to control and monitor an RS/6000 SP environment. The
beauty of the RS/6000 SP is that it has this single point of control. It connects
to the frame through RS-232 lines to perform hardware monitoring of the
nodes and the frame itself. Each frame must have an RS-232 connection to
the CWS for diagnostics, maintenance, and console access to the nodes.

The Switch
8 RS/6000 SP System Performance Tuning

The SP Switch is an optional element of the RS/6000 SP. It is a
high-performance interconnect between all the nodes. The total number of
nodes that can be connected with one switch board is 16. Once these 16
nodes are connected, a second switch is needed. The switch has a
non-blocking nature, meaning that unlike broadcast networks, where there
can only be one device on the network sending or receiving data, the switch
has up to four paths. And, in fact, the more paths that are used, the more
efficient the switch is. An Intermediate Switch Board is needed once you have
filled five full frames or up to 80 nodes. More information on the switch and
networks is covered in Chapter 3, “Network Topology” on page 13.

More details about the SP hardware and some information about selection
criteria for the nodes can be found in Appendix B, “Hardware Details” on page
255 or in Inside the RS/6000 SP, SG24-5145.

2.1.2 SP Software
This section gives an overview of the software components used by an
RS/6000 SP.

AIX

Advanced Interactive Executive (AIX) is IBM’s version of Unix. It is the
operating system on which the hardware executes.

PSSP

Parallel Systems Software Program (PSSP) is the software that installs,
configures, and controls the nodes. The nodes are centrally managed from
the CWS. PSSP uses Network Installation Management (NIM) to install,
maintain, or boot the nodes from the CWS. The hardware control and
monitoring part of the PSSP software communicates with the frame through
the Frame Supervisor Card (FSC). The communication uses an RS-232 serial
line connection. The Frame Supervisor is connected to the Node Supervisor
Card (NSC) and also to the Switch Supervisor (which is part of the
switchboard).

2.2 Communication Paths

Two communication paths between the nodes and the CWS (SP Ethernet
network) and between the frames and the CWS (RS 232) are mandatory for
an SP system. The switch network is optional.

• RS232 Hardware Monitoring Line
RS/6000 SP Overview 9

The mandatory RS232 hardware monitoring line connects the CWS to
each RS/6000 SP frame primarily used for node and frame hardware
monitoring.

• SP Ethernet

One of the prerequisites of the RS/6000 SP is an internal BNC or 10BaseT
network. The purpose of this network is to install the nodes’ operating
systems and the PSSP software and also to diagnose and maintain the
RS/6000 SP complex through the PSSP software.

2.3 System Partitioning

The RS/6000 SP enables you to divide the system into logically separate
systems. This concept of system partitioning is very similar to the Virtual
Machine in the mainframe environment, which supports different machine
images running in parallel; you can have a production image and a test image
within the same machine. The RS/6000 SP provides almost complete isolated
environments within the complex.

2.4 Homogenous versus Consolidated System

A homogenous environment in the RS/6000 SP environment is a cluster of
nodes; all of which perform similar tasks. An example of a homogenous
environment would be all nodes that are parallel database servers. A request
would come in to one node, and that node would dispatch the request to the
other nodes that make up the specific cluster.

The main characteristic of a homogenous system is the ease with which it
can be tuned as all nodes perform the same task. Once the first node is
tuned, the changes can be propagated to all others.

A consolidated system consists of various types of nodes performing distinct
roles. An example of a consolidated environment would be to have a few
nodes dedicated to a classical database environment (where no parallel
processing exists) along with a couple of nodes that would house Lotus Notes
servers as well as a dedicated ADSM backup node.

The main characteristic of consolidated nodes is that they consist of many
nodes performing a variety of tasks. Consolidated systems present some of
the most complex challenges when it comes to performance tuning.
10 RS/6000 SP System Performance Tuning

2.5 Logical versus Physical View

When providing any performance details on an RS/6000 SP system, it is
important to group the system into logical classes. These classes are groups
of nodes with similar characteristics; as an example, see Figure 2.

Figure 2. Grouping Nodes by Classes of Service

The best way to achieve this goal is to document your system in two steps.
First, take a physical inventory of your RS/6000 SP environment including all
peripheral devices. Next, take an inventory of the types of processing on the
nodes. Is this a homogenous or consolidated environment? If homogenous,
then this exercise becomes redundant after a few nodes, but it must be
finished before we can depict the complete environment. If consolidated, then
the exercise becomes even more crucial to gain a precise understanding of
the system. Once the environment is organized into types of applications per
node, we can draw a logical diagram as depicted in Figure 2 on page 11.

 A p p l ic a t io n

C l a s s

 C o n s o l id a t e d

C l a s s

F il e S e r v e r

C l a s s

File
Server

FILE
Server

FILE
Server

FILE
Server

Applic.
Node

Applic.
Node

Applic.
Node

Applic.
Node

Interconnect
Switch Fabric

Data
Server

Data
Server

Gateway
Node

Gateway
Node
RS/6000 SP Overview 11

12 RS/6000 SP System Performance Tuning

Chapter 3. Network Topology

SP networks consist of SP Ethernet, RS 232 connections between CWS and
frames, and the optional SP Switch network.

The choice of topology is one factor in achieving both scalability and
modularity. A variety of topologies have been chosen for connecting existing
commercial parallel systems.

Bus-based systems are well suited to connect a small number of nodes but
are limited by a total bus bandwidth that does not increase as more
processors are added. They are, therefore, not appropriate for connecting
hundreds of nodes.

To overcome bus scalability problems, massive parallel processing (MPP)
uses point-to-point interconnection networks. These networks are
constructed by connecting switch elements by point-to-point links.

3.1 The Ethernet Network

The SP Ethernet Network connects all the nodes to the CWS. The SP
Ethernet is used to monitor, install, update, boot, and customize the nodes
and should be dedicated to SP operating traffic. See a sample network
configuration in Figure 3 on page 14.
© Copyright IBM Corp. 1999 13

Figure 3. One Frame Ethernet Configuration

Scalability of the RS/6000 SP Ethernet network becomes increasingly
important as the number of nodes increases. The Ethernet can scale up to 30
participants per physical segment. If more than 29 nodes are used, another
node must be set up as gateway or router to connect different networks. The
use of repeaters, bridges, or an Ethernet switch may be an alternative. Figure
4 on page 15 shows a sample of large SP configuration.

The Control W orkstation

RS-232

SP Ethernet

FRAME

THIN THIN

HIGH

THIN

THIN THIN

THIN

W IDE

W IDE

W IDE
14 RS/6000 SP System Performance Tuning

Figure 4. 8-Frame Ethernet Configuration

When performing a network installation on more than eight nodes, it is
necessary to build a tree structure with the network so that several levels of
installation nodes exist. This method allows many nodes to be installed at
once while limiting the installation to eight nodes per physical subnet or
network.

3.2 The Switch Network

The dominant goals for the SP communication subsystem are scalability,
modularity, and ease of integration with the processing nodes. The objective
for scalability is a network that increases its aggregate bandwidth linearly as
the number of nodes increases while maintaining low average latency for
message transfer.

The goal of modularity is to provide cost-effective networks for small systems
that function as building blocks for large systems. Finally, we require the
ability to quickly integrate the latest processor technology.

Switch Switch

Control
Workstation

Network 8 Network 7 Network 6 Network 5Network 9

Network 2 Network 3 Network 4

1 2 33 34

Switch

Switch
Switch

Switch
Switch

Network 1

Switch Switch SwitchSwitch SwitchSwitch

Switch
Network Topology 15

Switching elements are devices with multiple input and output ports that
forward packets arriving at an input port to a desired output port. These
switch elements are non-blocking; that is, if a packet arriving at an input port
x is destined for a particular output port y, and no other received packets are
destined for y, then this packet may immediately be forwarded to y, regardless
of other received packets.

The switching element is also called the switch chip. Each such chip contains
eight switch ports and a crossbar that allows packets to pass directly from
port to port. These crossbar paths allow packets to pass through the switch
with low latency. Figure 5 shows a switch chip with eight link interfaces (each
link interface comprises two ports, one input, and one output port) and the
crossbar.

Figure 5. SP Switch Chip

An SP Switch board contains two fully interconnected columns, or stages, of
four switch chips as shown in Figure 6 on page 17. Note that there is a path
between any two external links.

Output Port

Input Port

SP Switch Port

Output Port

Input Port

Output Port

Input Port

Output Port

Input Port

Output Port

Input Port

Output Port

Input Port

Output Port

Input Port

Output Port

Input Port

8 x 8
Crossbar

SP Switch Chip

SP Switch Port

SP Switch Port

SP Switch Port

SP Switch Port

SP Switch Port

SP Switch Port

SP Switch Port

SP Switch
Link

SP Switch
Link

SP Switch
Link

SP Switch
Link

SP Switch
Link

SP Switch
Link

SP Switch
Link

SP Switch
Link
16 RS/6000 SP System Performance Tuning

These boards are building blocks used in constructing larger SP networks.

Figure 6. SP Switch Board

SP nodes are grouped into 16-processor units that are connected to one side
of the switch boards (also called node switch boards because of their direct
connection to the nodes).

The 16 unused links on the right side of the node switch board are used for
creating larger networks in one of two ways:

• For systems containing up to 80 nodes, these links connect directly to the
right sides of the other node switch boards. See Figure 7 on page 18 for
an example of such a network configuration.

S w itc h B o a r d

P 0
P 1
P 2
P 3

P 4
P 5
P 6
P 7

P 8
P 9

P 1 0
P 11

P 1 2
P 1 3
P 1 4
P 1 5

N
od

e
co

nn
ec

tio
ns
Network Topology 17

Figure 7. SP 80-way System

• As soon as you have more than 80 nodes, it gets a little bit more
complicated. Now, the links are connected to additional stages of switch
boards. See Figure 8 on page 19 for a switch network with more than 80
nodes.

Switch 2

To 16 Nodes

S
w

itc
h

1

To
16

N
od

es

Switch 5

To 16 Nodes

Switc
h 4

To
16 Nodes

S
w

itch
3

To
16

N
odes
18 RS/6000 SP System Performance Tuning

Figure 8. SP Switch Network with More Than 80 Nodes

Additional switch boards are added to the network topology. Since these
boards are not directly connected to nodes, they are called intermediate
switch boards (ISBs), while the boards that are directly connected to nodes
are called node switch boards (NSB).

Each node is connected to the switch board through a switch adapter.
Currently, there are three different types of switch adapters available. Each
adapter has two ports connected to the switch fabric: One input and one
output port (see Figure 9 on page 20). Even though there are two separate
ports, only one cable connects the adapter to the switch board.

The main difference between these adapters is their internal connection
within the nodes. Two adapters are standard bus-attached adapters, one of
which is designed for the Micro Channel Architecture (MCA), the other for the
PCI Bus system (currently only supported for the S70 or S7A nodes). The
third type of adapter connects to the MX-Bus within newer PCI-based nodes.

NSBsISBsNSBs

N
od

es

N
od

es
Network Topology 19

MX-Bus stands for mezzanine-extended-Bus and is a direct 1-slot connection
to the internal memory bus within PCI nodes.

Figure 9. Switch Adapter

More details about the SP switch can be found in the following documents:
Understanding and Using the SP Switch, SG24-5161, Inside the RS/6000 SP,
SG24-5145, and IBM System Journal, Vol 34, No. 2, 1995.

SP Switch Adapter

Output Port

Input Port

SP Switch Port

MCA Bus

MX Bus

SP Switch Link

SP Node

PCI Bus
20 RS/6000 SP System Performance Tuning

Chapter 4. TCP/IP Overview

The SP is essentially a network connected collection of workstations.
Because the communication network is the most import subject for any tuning
considerations for an SP, we should get a general understanding of how the
different layers of the TCP/IP protocol stack interact.

TCP/IP consists of several communication layers. There are parameters that
impact the different protocol layers. They can best be understood by breaking
them down into categories:

• The no parameters are the initial network options that affect TCP, UDP,
and IP and are independent to the adapter type.

• The MTU, or maximum transmission unit, is the largest possible packet
size that can be sent on a specific physical medium (Ethernet, Token-Ring,
SP Switch, and so on).

• The adapter queues specify the number of packets that can be queued on
a specific adapter while it is sending or receiving data. These are specific
to an adapter even if there are other adapters of the same type.

• The SP Switch uses switch pools instead. These switch adapter pools
define the amount of pinned kernel memory to be used by the switch
device driver to handle network traffic destined for the SP Switch.

For a review of the TCP/IP layer model and to clarify the interrelationships,
let’s break this down further, step by step:

1. An application performs a write request. Data is copied from the
application’s working buffer to the socket send buffer.

2. The socket layer passes the data to TCP or UDP.

3. For remote networks, if the data is larger than the maximum segment size
(MSS), TCP breaks the data into fragments that comply with the MSS.

4. For local networks, if the data is larger than the MTU, TCP breaks the data
into fragments that comply with the MTU.

5. UDP leaves the fragmentation to the IP layer.

6. The Interface Layer makes sure that no packet exceeds the MTU.

7. The packets are then placed on the adapter output queue or the SP
Switch sendpool and are transmitted to the receiving system.
© Copyright IBM Corp. 1999 21

Figure 10. TCP/UDP/IP Data Flow

8. The receiving host places the incoming packets on the adapter’s receive
queue. They are then passed up to the IP layer.

9. The IP layer then determines if any fragmentation has taken place due to
the MTU. If so, it puts the fragments back to their original form and passes
the packets to TCP or UDP.

10.TCP reassembles the original segments and puts them on the socket
receive buffer in kernel memory, or UDP passes the data on to the socket
receive buffer in kernel memory.

11.The application’s read request causes the appropriate data to be copied
from the socket receive buffer to the buffer in the application’s working
area.

There are many parameters that affect your network performance. At the
device driver layer, you have your transmit queue size marked by the
parameters xmt_que_size or spoolsize. You also have your receive queue
size marked by rec_que_size or rpoolsize.

Socket Layer
(Subsytem
e.g. NFS, DFS

Application

TCP or
UDP
Layer

IP Input
Queue

S
E

N
D

IN
G

R
E

C
E

IV
IN

G

IP Layer

DEVICE
DRIVER

ADAPTERMTU

DMA

MTU

DMA

Media

IF LayerMTU Enforcement

MTU Compliance

Socket Send
Buffer

Socket Receive
Buffer

TCP
UDP TCP UDP(MTU Compliance)

Receive
Queue

Transmit
Queue

mbufs

mbuf mbuf

User space

System space

DatagramsStream

Send
Buffer

Read
Buffer

copy copy
22 RS/6000 SP System Performance Tuning

At the interface layer, you have enforcement of the MTU or segment size as it
pertains to what type of network media is being used: Ethernet, Token-Ring,
SP Switch, or others.

At the transport layer, your performance parameters are set by tcp/udp
send/recvspace.

You also have the socket layer between the transport and application layers,
the parameter sb_max, which determines the maximum amount of memory or
mbuf space that can be used by TCP or UDP for socket buffers for each
socket.

Lastly, the parameters listed above all impact system memory. The thewall
parameter determines the maximum amount of buffer space that can be used
across the entire communication subsystems.

4.1 Communication Subsystem Memory Management

The design of the communication subsystem memory management changed
with the latest incarnations of AIX. One major requirement for the algorithm is
to efficiently allocate and reclaim pinned (physical) memory within the
communication subsystem. This is achieved through the use of mbufs and
additional buffers called clusters. An mbuf is a 256-byte data buffer. Prior to
AIX 4.2.1, a mcluster had a fixed size of 4096 bytes, or one page of memory.
That is, you could only use a combination of mbufs and mclusters allocated
for the data.

It is up to the device driver to inform TCP or UDP what size of mcluster to
allocate. They use multiple buffers, each of the same data size.
TCP/IP Overview 23

Figure 11. Cluster Chains

This scheme reduces the amount of pinned memory by not preallocating a
set of mbuf buffers and allows the system to give memory to the buckets
currently in demand. Each bucket keeps its own high and low watermark.
Smaller buckets can steal from larger buckets. This ability allows this scheme
to be self-tuning.

Use netstat -m to get an overview of cluster usage and to which subsystems
clusters are allocated. See Figure 12 on page 25 for an overview.

32
64

128
256
512

1024
2048
4096
8192

16384

low
water
mark

high
water
mark
24 RS/6000 SP System Performance Tuning

Figure 12. netstat -m Output

As you can see from the command output, each CPU in an SMP system has
a dedicated network memory pool. This is to improve performance by having
pools dedicated per CPU. This eliminates the need for looking on mbuf pool

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 135 17392 0 121 640 0
64 77 1826 0 51 320 0
128 52 2678 0 12 160 0
256 42 3129745 0 86 384 0
512 51 3594 0 29 40 3
1024 22 19845 0 62 100 0
2048 0 768 0 4 100 0
4096 2 664 0 5 120 0
16384 1 1026 0 18 24 7
32768 1 1 0 0 2048 0

******* CPU 1 *******
By size inuse calls failed free hiwat freed
32 19 12593 0 109 640 0
64 14 2522 0 50 320 0
128 6 2345 0 26 160 0
256 59 2980466 0 69 384 0
512 23 3946 0 41 40 0
1024 3 15438 0 65 100 0
2048 0 716 0 6 100 0
4096 1 641 0 1 120 0
16384 0 916 0 18 24 8

******* CPU 2 *******
By size inuse calls failed free hiwat freed
32 9 2903 0 119 640 0
...

By type inuse calls failed memuse memmax mapb

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
TCP/IP Overview 25

access. In this screen, we have shortened the output from an 8-way high
node.

By setting the extendednetstat parameter with the no command, you will get
more detailed information. For example:

no -o xtendednetstat=1

Figure 13 shows the output of the netstat -m command after the modification.
In this screen, you will notice that the netstat command now gives more
information about the use of the various buffers.
26 RS/6000 SP System Performance Tuning

Figure 13. netstat -m with extendednetstat=1

The inuse column shows how many pinned pieces of kernel virtual memory
are currently used, which means that they always reside in physical memory
and are never paged out.

In addition to avoiding duplication, sharing the mbuf and cluster pools allows
the various layers to pass pointers to one another reducing mbuf
management calls and copying of data.

Starting with AIX 4.1, the only network option used to tune the network
maximum memory pool is thewall. Since the new scheme is self-tuning, there

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 135 17394 0 121 640 0
64 77 1827 0 51 320 0
128 53 2760 0 11 160 0
256 42 3130406 0 86 384 0
512 51 3596 0 29 40 3
1024 22 19847 0 62 100 0
2048 0 768 0 4 100 0
4096 2 664 0 5 120 0
16384 1 1026 0 18 24 7
32768 1 1 0 0 2048 0

******* CPU 1 *******
By size inuse calls failed free hiwat freed
32 19 12598 0 109 640 0
64 14 2526 0 50 320 0
...

By type inuse calls failed memuse memmax mapb
mbuf 21 452 0 5376 10240 0
socket 321 8 0 1348 1120 0
pcb 728 4 0 78 128 0
fragtbl 0 4 0 0 32 0
...

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
TCP/IP Overview 27

is no need to tune any other parameter. If the system memory requirements
exceed thewall, it will start to drop packets.

Figure 14. The Network Memory Pool

4.2 Socket Layer

Sockets provide the application program interface (API) to the communication
subsystem. There are several types of sockets that provide various levels of
service by using different communication protocols. Sockets of type
SOCK_DGRAM use the UDP protocol. Sockets of type SOCK_STREAM use
the TCP protocol. See Figure 15 on page 29 for an overview.

thewall

mbuf
256 bytes

minimum
cluster

32 bytes

mcluster
16384 bytes

mcluster
4096 bytes
28 RS/6000 SP System Performance Tuning

Figure 15. Socket Layer

The semantics of opening, reading, and writing to sockets are similar to those
for manipulating files.

The sizes of the buffers in system virtual memory (that is, the total number of
bytes from the mbuf pools) that are used by the input and output sides of
each socket are limited by system-wide default values (which can be
overridden for a given socket by a call to the setsockopt() subroutine):

• udp_sendspace and udp_recvspace

The buffer sizes per datagram socket. The SP defaults recommendations
are 32768 and 65536.

• tcp_sendspace and tcp_recvspace

The buffer sizes per stream socket. The SP default for both values is
65536.

MTU

INTERFACE
LAYER

PROTOCOL LAYERS
(TCP,UDP,IP,ICMP,IGMP)

SOCKET
LAYER

APPLICATION
LAYER

Function
Call

SOCKET
QUEUES

PROTOCOL QUEUE
(IP INPUT QUEUE)

INTERFACE QUEUES

Software Interrupt
(Caused by Interface Layer)

Hardware Interrupt
(Caused by Network Device)

HARDWARE LAYER

System Calls
TCP/IP Overview 29

Send Flow

As an application writes to a socket, the data is copied from user space into
the socket send buffer in kernel space. Depending on the amount of data
being copied into the socket Data size send buffer, the socket puts the data
into either mbufs or mclusters. Once the data is copied into the socket send
buffer, the socket layer calls the transport layer (either TCP or UDP) passing
it a pointer to the linked list of mbufs (an mbuf chain) and mclusters.

Receive Flow

On the receive side, an application opens a socket and attempts to read data
from it. If there is no data in the socket receive buffer, the socket layer causes
the application thread to go to the sleep state (blocking) until data arrives.
When data arrives, it is put on the receive socket buffer queue and the
application thread is made dispatchable. The data is then copied into the
application’s buffer in user space, the mbuf chain is freed, and control is
returned to the application.

Socket send or receive buffer sizes are limited to no more than sb_max
bytes because sb_max is a ceiling on buffer space consumption. However,
the two quantities are not measured in the same way.

The socket buffer size limits the number of bytes that can be held in the
socket buffers. sb_max limits the amount of space in buffers of network
memory pool that can allocated to a socket at any given time.

Note
30 RS/6000 SP System Performance Tuning

4.3 UDP and TCP Functions

The following two sections describe the functions of UDP and TCP. To
facilitate a comparison of UDP and TCP, the descriptions are divided into the
following subsections:

• Connection

• Error detection

• Error recovery

• Flow control

• Data size

• MTU handling

4.3.1 UDP Layer
UDP provides a low-cost protocol for applications that have the facilities to
deal with communication failures. UDP is most suitable for request-response
applications. Since such an application has to handle a failure to respond
anyway, it is little additional effort to handle communication errors as one of
the causes of failure to respond to. For this reason, and because of its low
overhead, subsystems such as NFS, ONC RPC, DCE RPC, and DFS use
UDP.
TCP/IP Overview 31

Table 1. UDP Functions

Function Attribute Description

Connection None UDP is essentially a stateless protocol. Each
request received from the caller is handled
independently of those that precede or follow it.

Error detection Checksum
creation and
verification

The sending UDP builds the checksum and the
receiving UDP checks it. If the check fails, the
packet is dropped.

Error recovery None UDP does not acknowledge receipt of packets,
nor does it detect their loss in transmission or
through buffer-pool overflow. Consequently, UDP
never retransmits a packet. Recovery must be
performed by the application.

Flow control None When UDP is asked to send, it sends the packet
to IP. When a packet arrives from IP, it is placed
in the socket-receive buffer. If either the device
driver/adapter buffer queue or the socket-receive
buffer is full when the packet arrives there, the
packet is dropped without an error indication.
The application or subsystem that sent the
packet must detect the failure by timeout and
retry the transmission.
Also, the application must detect out-of-order
packets and reorder them if necessary.

Data size Must fit in one
buffer

This means that the buffer pools on both sides of
UDP must have buffer sizes that are adequate
for an application’s requirements. The maximum
size of a UDP packet is 64 KB. Of course, an
application that builds large blocks can break
them into multiple datagrams itself (DCE is an
example) but it is simpler to use TCP.

MTU handling None Dealing with data larger than the maximum
transfer unit (MTU) size for the interface is left to
IP. If IP has to fragment the data to make it fit the
MTU, loss of one of the fragments becomes an
error that the application or subsystem must deal
with.
32 RS/6000 SP System Performance Tuning

Send Flow

If udp_sendspace is large enough to hold the datagram, the application’s data
is copied into mbufs in kernel memory. If the datagram is larger than
udp_sendspace, an error is returned to the application.

Receive Flow

UDP verifies the checksum and queues the data onto the proper socket. If the
udp_recvspace limit is exceeded, the packet is discarded. If the application is
waiting on a receive or read on the socket, it is put on the run queue. This
causes the receive to copy the datagram into the user’s address space and
release the mbufs; the receive is complete. Normally, the receiver will
respond to the sender to acknowledge the receipt and to return a response
message.

4.3.2 TCP Layer
TCP provides a reliable transmission protocol. With TCP ensuring that
packets reach their destination, the application is freed from error detection
and recovery responsibilities. Applications that use TCP transport include ftp,
rcp, and Telnet. DCE and NFS can use TCP if it is configured to use a
connection-oriented protocol.
TCP/IP Overview 33

Table 2. TCP Functions

Function Attribute Description

Connection Explicit The instance of TCP that receives the
connection request from an application (we will
call it the initiator) establishes a session with its
counterpart on the other system, which we will
call the listener. All exchanges of data and
control packets are within the context of that
session.

Error detection Checksum
creation and
verification

The sending TCP side builds the checksum and
the receiving TCP side checks it. If checksum
verification fails, the receiver does not
acknowledge receipt of the packet.

Error recovery Full TCP detects checksum failures and loss of a
packet or fragment through timeout. In error
situations, TCP retransmits the data until it is
received correctly (or notifies the application of
an unrecoverable error).

Flow control Enforced TCP uses a discipline called a sliding window to
ensure delivery to the receiving application. The
sliding window concept is illustrated in Figure 22
on page 70. (The records shown in the figure are
for clarity only. TCP processes data as a stream
of bytes; it does not keep track of record
boundaries, which are application-defined.)

Data size Indefinite TCP does not process records or blocks; it
processes a stream of bytes. If a send buffer is
larger than the receiver can handle, it is
segmented into MTU-sized packets.

MTU handling Handled by
segmentation
in TCP

When the connection is established, the initiator
and the listener negotiate a maximum segment
size (MSS) to be used. The MSS is normally
smaller than the MTU. If the output packet size
exceeds the MSS, TCP does the segmentation,
thus making fragmentation in IP unnecessary.
See also “Maximum Segment Size (MSS)” on
page 67.
34 RS/6000 SP System Performance Tuning

Send Flow

When the TCP layer receives a write request from the socket layer, it
allocates a new mbuf for its header information and copies the data in the
socket-send buffer either into the TCP-header mbuf, if there is room, or into a
newly allocated mbuf chain. TCP then checksums the data, updates its
various state variables, which are used for flow control and other services,
and finally calls the IP layer with the header mbuf now linked to the new mbuf
chain.

Receive Flow

When the TCP input routine receives input data from IP, it checksums the
TCP header and data for corruption detection, determines which connection
this data is for, removes its header information, links the mbuf chain onto the
socket-receive buffer associated with this connection, and uses a socket
service to wake up the application (if it is sleeping as described earlier).

4.4 Internet Protocol Layer

The Internet Protocol (IP) provides a basic datagram service to the higher
layers. If it is given a packet larger than the MTU of the interface, it fragments
the packet and sends the fragments to the receiving system, which
reassembles them into the original packet. If one of the fragments is lost in
transmission, the incomplete packet is ultimately discarded by the receiver.

The maximum size of IP’s queue of packets received from the network
interface is controlled by the ipqmaxlen parameter, which is set and displayed
with no. If the number of packets in the input queue reaches this number,
subsequent packets are dropped until the number goes down.

Send Flow

When the IP output routine receives a packet from UDP or TCP, it identifies
the interface to which the mbuf chain should be sent, updates and checksums
the IP part of the header, and passes the packet to the interface (IF) layer.

IP determines the proper device driver and adapter to use based on the
network number. The driver interface table defines the maximum MTU for this
network. If the datagram is less than the MTU size, IP adds the IP header in
the existing mbuf, checksums the IP header, and calls the driver to send the
frame.
TCP/IP Overview 35

If the datagram is larger than the MTU size (which only happens in UDP), IP
fragments the datagram into MTU-sized fragments, appends an IP header (in
an mbuf) to each, and calls the driver once for each fragment frame.

Receive Flow

IP checks the IP header checksum to make sure the header was not
corrupted and determines if the packet is for this system. If so, and the frame
is not a fragment, IP passes the mbuf chain to the TCP or UDP input routine.

If the received frame is a fragment of a larger datagram (which only happens
in UDP), IP holds onto the frame. When the other fragments arrive, they are
merged into a logical datagram and given to UDP when the datagram is
complete. IP holds the fragments of an incomplete datagram until the ipfragttl
time (as specified by no) expires. The default ipfragttl time is 60 seconds. If
any fragments are lost due to problems, such as network errors, lack of
mbufs, or transmit queue overruns, IP never receives them. When ipfragttl
expires, IP discards the fragments it did receive. This is reported by netstat -s
under ip: as fragments dropped after timeout.

4.5 LAN Adapters and Device Drivers

Many different kinds of LAN adapters are supported in the AIX environment.
These adapters differ not only in the communications protocol and
transmission medium they support but also in their interface to the I/0 bus
and the processor. Similarly, the device drivers vary in the technique used to
convey the data between memory and the adapter. The following high-level
description applies to most adapters and device drivers, but details vary.

Send Flow

At the device-driver layer, the mbuf chain containing the packet is enqueued
on the transmit queue. The maximum total number of output buffers that can
be queued is controlled by the system parameter xmt_que_size. In some
cases, the data is copied into driver-owned DMA buffers. The adapter is then
signaled to start DMA operations.

At this point, control returns back up the path to the TCP or UDP output
routine, which continues sending as long as it has more to send. When all
data has been sent, control returns to the application, which then runs
asynchronously while the adapter transmits data. When the adapter has
completed transmission, it interrupts the system, and the device interrupt
routines are called to adjust the transmit queues and free the mbufs that held
the transmitted data.
36 RS/6000 SP System Performance Tuning

Receive Flow

When frames are received by an adapter, they are transferred from the
adapter into a driver-managed receive queue. The receive queue may consist
of mbufs, or the device driver may manage a separate pool of buffers for the
device; in either case, the data is in an mbuf chain when it is passed from the
device driver to the IF layer.

Some drivers receive frames through DMA into a pinned area of memory and
then allocate mbufs and copy the data into them. Drivers or adapters that
receive large-MTU frames may have the frames DMA’d directly into cluster
mbufs. The driver hands off the frame to the proper network protocol (IP in
this example) by calling a demultiplexing function that identifies the packet
type and puts the mbuf containing the buffer on the input queue for that
network protocol. If no mbufs are available, or, if the higher-level input queue
is full, the incoming frames are discarded.
TCP/IP Overview 37

38 RS/6000 SP System Performance Tuning

Part 2. SP System Performance Tuning
© Copyright IBM Corp. 1999 39

40 RS/6000 SP System Performance Tuning

Chapter 5. SP Performance Tuning Cycle

Tuning an SP system is an ongoing process that requires continuous review
of the system settings and adjustments for changes in the computing
environment. The following eight steps describe the performance tuning
cycle:

1. Installation or migration

Part of installation or migration is the selection of the appropriate initial
tunables for the nodes. IBM provides four alternate tuning files
(tuning.cust) that contain initial performance tuning parameters for the
following SP environments:

• Commercial

• Development

• Scientific and Technical

• Default

Selecting a tuning file at this stage is not the end of all efforts, but the
beginning. These files should be seen as base setup for getting a running
system. You need to go through the rest of the SP performance tuning
cycle and adjust the parameters according to your requirements. A sample
tuning.cust file is located in the /usr/lpp/ssp/samples directory on the
CWS.

2. Document your system

When your system is alive and installed correctly, you should document
your system settings and your network configuration. At this stage, the SP
system is running, but you may not necessarily know its performance.

3. Evaluate the workload

You need to evaluate system workload characteristics. You must know
which type of environment you are running: is it a homogenous or
consolidated type of environment?

4. Establish new tunable settings

Based on the previous step, you may need to establish new values for the
tunables.

5. Record and keep track of system settings

Record all changes that have been made. You must know what was
changed, when it was changed, when data was collected, and what this
© Copyright IBM Corp. 1999 41

data was good for. Along with the change records, keep a log of the
performance impacts on the system and the nodes during the changes.

6. Apply and manage new settings

It is important to know where to set these new tunable values. If they are
not set in the correct places, you may not use the changed settings. In the
worst case, the node will not reboot at all.

For all dynamic tunables (those that take effect immediately), the settings
for each node should be set in its local /tftpboot/tuning.cust file. It is
guaranteed that this file will be executed on every reboot. Tunables
changed using the no, nfso , or vmtune commands can be included in this
file.

For a small number of parameters that are not dynamically tunable, the
values should be placed in the /etc/rc.net file. The following tunables are
the only ones in this category:

• arptab_nb

• arptab_bsiz

• arpqsize

• ifsize

Once any changes have been made to /etc/rc.net, the system must be
rebooted before these variables take effect.

7. Monitor performance indices

Continue to check the system and monitor the performance indices (such
as response time of applications, throughput, possible errors, and so on)
to prove that the changes led to an overall improvement.

Eventually, one of the following two situations may occur:

• Performance problems

The system shows performance problems. Record and analyze the data
that shows performance degradation. Perform AIX performance analysis,
SP Switch analysis, SP log analysis, and so forth, and then go back to
Step 3.

• System changes

Some hardware or software is going to be added, replaced by a newer
version or removed from the system. Note the changes, identify node role
changes (if any), then go back to Step 1.

Figure 16 illustrates this performance tuning cycle.
42 RS/6000 SP System Performance Tuning

Figure 16. Performance Tuning Cycle

1 - Installation/Migration

7 - Monitor Performance Indices

2 - Document your System

3 - Evaluate Workload

4 - Establish New Tunable Settings

5 -Record and Keep Track of
System Settings

8a - Performance
Problems

8b - System
Changes
SP Performance Tuning Cycle 43

44 RS/6000 SP System Performance Tuning

Chapter 6. SP Network Tunables

The tuning objectives for the RS/6000 SP are: improve performance,
response time, and resource utilization. These objectives look similar to those
for a stand-alone RS/6000. Nevertheless, the approach for tuning an SP
system is, in some situations, different from how you would tune an AIX
workstation.

This chapter discusses the way IBM RS/6000 SP systems are tuned for use
within various environments. We first highlight general system
recommendations and later describe specific tuning strategies.

6.1 Initial Considerations

The basic architecture of the SP is a set of nodes connected by a
communication layer. Therefore, the most important aspect of tuning
concerns the communication network. Once the RS/6000 SP communication
layer is properly tuned, use standard AIX tuning within the nodes.

6.1.1 General Tuning Recommendations
The very first step always involves monitoring the system. Keeping a detailed
log (statistics and also parameters) of your system before and after any
configuration changes can save hours of distress later. Any changes to your
SP environment, whether you are adding applications or changing your
subsystems, requires a full review of all your system parameters.

In tuning an AIX workstation or server, the most common approach is to tune
the machine to handle the amount of traffic or services requested of it. In the
case of a file server, the server is tuned to the maximum amount of traffic it
can receive. In general, the bottleneck in a high-end server is the capacity of
the network through which services are requested.

The situation with an SP system could be the opposite in some situations.
The SP Switch is faster than any other network available. With the
non-blocking nature of a switch, the number of requests and volume of data
that may be requested of a node can far exceed the node's capacity. To
properly handle this situation, the SP system must manage the volume of
services requested of a server. In other words, you should reduce the number
of requests at the client, rather than increase the capacity of the server. It is
very easy on large SP system configurations to require more services than
the most powerful node can currently deliver.
© Copyright IBM Corp. 1999 45

6.1.2 Consolidated System Challenges
Consolidated systems present a larger tuning challenge than homogeneous
systems. Consolidated systems are those in which different nodes assume
different roles. In such a case, make a full examination of what is running on
each node, the traffic through the node, and any interaction between
applications. Defining an appropriate set of tunables for a consolidated
system requires accounting for everything running on each node in the SP
system.

The typical method of picking apart the consolidated tuning problem is to
group nodes with identical workloads. As a group, these nodes can usually
use the same set of tunables. Where there are three distinct node workload
types, three sets of tunables need to be determined and the appropriate set
applied to the tuning.cust file on the appropriate nodes.

6.1.3 System Topology Considerations
The most important consideration in configuring the SP Ethernet is the
number of subnets configured (see Figure 18 on page 53). The routing
through the Ethernet can be complicated because of the limitation on the
number of simultaneous network installs per subnet. More information
regarding the topology of the Ethernet can be found in Planning Volume 1,
Hardware and Physical Environment, GA22-7280.

Systems that use Ethernet switches need to address the flat Ethernet
topology rather than a hierarchical network tree of the traditional SP Ethernet.

When configuring software that uses the SP Ethernet, consider the software
location in the SP Ethernet topology. Software, such as LoadLeveler and
POE, uses the SP Ethernet to communicate to other nodes. Installing such
software on a far point in the network in a large SP configuration can cause
bottlenecks on the network subnets and the adapters connected to the CWS.
On systems where the CWS is the default route, the Ethernet adapter that
maps to the default address can become a bottleneck as traffic is all routed
through this one adapter.

Installing such software on the CWS causes the lowest possible traffic.
However, the CWS has to be powerful enough to act as the CWS and, in
addition, support the additional software and network traffic.

It is not recommended that the SP Ethernet be local to other parts of the
outside computing network topology. Keeping only SP traffic on the SP
Ethernet prevents outside network traffic from causing performance problems
on the SP itself. If you have to connect the SP Ethernet to your external
46 RS/6000 SP System Performance Tuning

network, make sure that the outside traffic does not overload the SP Ethernet.
You can overload it if you route high-speed network adapter traffic (FDDI or
ATM for example) through the SP Ethernet. Route gateway traffic over the SP
switch from gateways to FDDI, ATM, and other high-speed networks.
Configure routers or gateways to distribute the network traffic so that one
network or subnet is not a bottleneck.

Several gateways or the SP router node should be configured if a large
volume of traffic is expected. All traffic on these networks can be monitored
using the standard network monitoring tools. Details about the monitoring
tools and their usage can be found in AIX Version 3.2 and 4.1 Performance
Tuning Guide, SC23-2365 or in Chapter 11, “IBM Performance Tools” on page
153.

6.2 AIX Network Tunables

The tunable values should be set to customized values during the installation
process. See 6.4, “Tuning the SP Network for Specific Workloads” on page 59
for recommended default settings. Use the no command to display the current
settings.

The most important tunables needed for the SP are:

thewall

Purpose: This specifies the maximum amount of memory, in KB,
that is allocated to the memory pool. In AIX Version 4.2.1
and earlier, the default value is 1/4 of real memory or
65536 (64 MB), whichever is smaller. In AIX Version 4.3.0,
the default value is 1/4 of real memory or 131072 (128
MB), whichever is smaller. In AIX Version 4.3.1, the
default value is 1/2 of real memory or 131072 (128 MB),
whichever is smaller. In AIX Version 4.3.2 and later, the
default value is 1/2 of real memory or 1048576 (1 GB),
whichever is smaller. thewall is a runtime attribute.

Values: Defaults: see Purpose.

Display: no -o thewall

Change: no -o thewall=newvalue

Changes take effect immediately and are effective until
the next reboot.

Tuning: Increase size, preferably, to multiples of 4 KB.
SP Network Tunables 47

sb_max

Purpose: This provides an absolute upper bound on the size of TCP
and UDP socket buffers per socket. Limits
udp_sendspace, udp_recvspace, tcp_sendspace and
tcp_recvspace. The units are in bytes.

Values: Default: 65536

Display: no -o sb_max

Change: no -o sb_max=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Tuning: Increase size, preferably to multiples of 4096. Should be
at least twice the size of the largest value for
tcp_sendspace, tcp_recvspace, udp_sendspace, and
udp_recvspace.

subnetsarelocal

Purpose: This specifies that all subnets that match the subnet mask
are to be considered local for purposes of using MTU
instead of the maximum segment size (MSS).

Values: Default: 1 (yes), Range: 0 or 1

Display: no -o subnetsareloca l

Change: no -o subnetsarelocal=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Tuning: This is a configuration decision with performance
consequences. If the subnets have the same MTU, and
subnetsarelocal is 0, TCP sessions may use an
unnecessarily small MSS.

ipforwarding

Purpose: This specifies whether the kernel should forward IP
packets.

Values: Default: 0 (no), Range: 0 or 1

Display: no -o ipforwarding

Change: no -o ipforwarding=newvalue

Changes take effect immediately. Change is effective until
next reboot.
48 RS/6000 SP System Performance Tuning

Comment: This is a configuration decision with performance
consequences. Set to 1 for gateway nodes.

tcp_sendspace

Purpose: Provides the default value of the size of the TCP socket
send buffer in bytes.

Values: Default: 16384, Range: 0 to 64 KB if rfc1323=0,

Range: 0 to 4 GB if rfc2323=1.

Display: no -o tcp_sendspace

Change: no -o tcp_sendspace=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Tuning: Increase size, preferably to a multiple of 4096.

tcp_recvspace

Purpose: This provides the default value of the size of the TCP
socket receive buffer. The value is in bytes.

Values: Default: 16384, Range: 0 to 64 KB if rfc1323=0,

Range: 0 to 4 GB if rfc2323=1, should be less than
sb_max.

Display: no -o tcp_recvspace

Change: no -o tcp_recvspace=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Tuning: Increase size, preferably to a multiple of 4096.

udp_sendspace

Purpose: This provides the default value of the size of the UDP
socket send buffer, in bytes.

Values: Default: 9216, Range: 0 to 65536

Display: no -o udp_sendspace

Change: no -o udp_sendspace=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Tuning: Increase size, preferably, to a multiple of 4096. This
should always be less than udp_recvspace but never
greater than 65536.
SP Network Tunables 49

udp_recvspace

Purpose: Provides the default value of the size of the UDP socket
receive buffer.

Values: Default: 41600

Display: no -o udp_recvspace

Change: no -o udp_recvspace=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Tuning: Increase size, preferably to a multiple of 4096. Should
always be greater than udp_sendspace and sized to
handle as many simultaneous UDP packets as can be
expected per UDP socket.

rfc1323

Purpose: Value of 1 indicates that tcp_sendspace and
tcp_recvspace sizes can exceed 64 KB.

If the value is 0, the effective tcp_sendspace and
tcp_recvspace sizes are limited to a maximum of 65535.

Values: Default: 0, Range: 0 or 1

Display: no -o rfc1323

Change: no -o rfc1323=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Comment: Always set to 1.

tcp_mssdflt

Purpose: This is the default maximum segment size used in
communicating with remote networks.

Values: Default: 512, Range: 512 to unlimited

Display: no -o tcp_mssdflt

Change: no -o tcp_mssdflt=newvalue

Changes take effect immediately for new connections.
Change is effective until next reboot.

Tuning: Increase size, if practical. If set higher than MTU of the
adapter, IP or intermediate router fragments packets.
50 RS/6000 SP System Performance Tuning

spoolsize

Purpose: This is the size of the SP Switch device driver send pool in
bytes.

Values: Default: 512 KB, Range: 512KB to 16 MB

Display: lsattr -E -l css0

Change: chgcss0 -l css0 -a spoolsize=newvalue

Changes update the ODM; so, these changes will be
permanent. A reboot of the system is necessary in order
to apply any changes.

rpoolsize

Purpose: This is the size of the SP Switch device driver receive pool
in bytes.

Values: Default: 512 KB, Range: 512KB to 16 MB

Display: lsattr -E -l css0

Change: chgcss0 -l css0 -a rpoolsize=newvalue

Changes update the ODM; so, these changes will be
permanent. A reboot of the system is necessary in order
to apply any changes.

MTU

Purpose: This limits the size of the packets that are transmitted on
the network in bytes.

Values: Default: adapter dependent, Range: 512 bytes to 65536
bytes

Display: lsattr -E -l interface (for example: tr0)

Change: chdev -l interface -a mtu=newvalue

Because all the systems on the LAN must have the same
MTU, they must change simultaneously. Change is
effective across boots.

Tuning: The default size should be kept.
SP Network Tunables 51

6.2.1 TCP Maximum Segment Size (MSS)
The TCP protocol includes a mechanism for both ends of a connection to
negotiate the maximum segment size (MSS) to be used over the connection.
Each end uses the OPTIONS field in the TCP header to advertise a proposed
MSS. The MSS that is chosen is the smaller of the values provided by the two
ends.

The purpose of this negotiation is to avoid the delays and throughput
reductions caused by fragmentation of the packets when they pass through
routers or gateways and reassemble at the destination host.

The value of MSS advertised by the TCP software during connection setup
depends on whether the other end is a local system on the same physical
network (that is, the systems have the same network number) or whether it is
on a different, remote, network.

6.2.2 Subnetting and the subnetsarelocal
Several physical networks can be made to share the same network number
by subnetting. The easiest way to understand subnet addressing is to
imagine that a site has a single class B IP network assigned to it, but it has
two or more physical networks. Only local routers know that there are multiple
physical nets and how to route among them.

Conceptually, adding subnets only changes the interpretation of the IP
address slightly. Instead of dividing the 32-bit IP address into a network prefix
and a host suffix, subnetting divides the address into a network portion and a
local portion. The interpretation of the network portion remains the same as
for networks that do not use subnetting. The interpretation of the local portion
is left up to the site.

The example in Figure 17 shows subnet addressing with a class B address
that has a 2-octet internet portion and 2-octet local portion. In the example,
one octet of the local portion identifies a physical network, and the other octet
identifies a host on that network.
52 RS/6000 SP System Performance Tuning

Figure 17. Subnet Addressing

In AIX, the no option subnetsarelocal specifies, on a system-wide basis,
whether subnets are to be considered local or remote networks. With
subnetsarelocal=1 (the default), Host A on subnet 1 considers Host B on
subnet 2 to be on the same physical network.

The consequence of this is that when Host A and Host B establish a
connection, they negotiate the MSS assuming they are on the same network.
Each host advertises an MSS based on the MTU of its network interface. This
usually leads to an optimal MSS being chosen.

This approach has several advantages:

• It does not require any static bindings; MSS is automatically negotiated.

• In order for small differences between adjacent subnets in the MTU to be
handled appropriately, it does not disable or override the TCP MSS
negotiation.

The disadvantages are:

• Potential IP router fragmentation when two high-MTU networks are linked
through a lower-MTU network. Figure 18 illustrates this problem.

Figure 18. Inter-Subnet Fragmentation

In this scenario, Hosts A and B establish a connection based on a
common MTU of 4352. A packet going from A to B will be fragmented by

local
part

Internet
part

physical
network

host
Internet

part

Host A Host B

FDDI FDDIEthernet

MTU=4352 MTU=4352MTU=1500

Router 1 Router 2
SP Network Tunables 53

Router 1 and defragmented by Router 2, and the reverse will occur going
from B to A.

• Source and destination must both consider subnets to be local.

6.3 SP System-Specific Tuning Recommendations

Let us have a closer look at the tunables that need some special observation
in an SP environment. In the output of the no -a command taken from AIX
4.3.2 in Figure 19, the appropriate tunables are highlighted.

Figure 19. Displaying Network Options

The following are specific details for setting the network tunables for the SP
system:

thewall = 65536 lowthresh = 90 pmtu_default_age = 10

sockthres = 85 medthresh = 95 pmtu_rediscover_interval = 30

sb_max = 2097152 psecache = 1 udp_pmtu_discover = 0

somaxconn = 1024 subnetsarelocal = 1 tcp_pmtu_discover = 0

clean_partial_conns = 0 maxttl = 255 ipqmaxlen = 512

net_malloc_police = 0 ipfragttl = 60 directed_broadcast = 1

rto_low = 1 ipsendredirects = 1 ipignoreredirects = 0

rto_high = 64 ipforwarding = 1 ipsrcroutesend = 1

rto_limit = 7 udp_ttl = 30 ipsrcrouterecv = 1

rto_length = 13 tcp_ttl = 60 ipsrcrouteforward = 1

inet_stack_size = 16 arpt_killc = 20 ip6srcrouteforward = 1

arptab_bsiz = 7 * tcp_sendspace = 524288 ip6_defttl = 64

arptab_nb = 25 * tcp_recvspace = 524288 ndpt _keep = 120

tcp_ndebug = 100 * udp_sendspace = 6553 ndpt_ reachable = 30

ifsize = 8 * udp_recvspace = 524288 ndpt_retrans = 1

arpqsize = 1 rfc1122addrchk = 0 ndpt_probe = 5

ndpqsize = 50 nonlocsrcroute = 1 ndpt_down = 3

route_expire = 0 tcp_keepintvl = 150 ndp_umaxtries = 3

strmsgsz = 0 tcp_keepidle = 14400 ndp_mmaxtries = 3

strctlsz = 1024 bcastping = 1 ip6_prune = 2

nstrpush = 8 udpcksum = 1 tcp_timewait = 1

strthresh = 85 tcp_mssdflt = 1448 tcp_ephemeral_low = 32768

psetimers = 20 icmpaddressmask = 0 tcp_ephemeral_high = 65535

psebufcalls = 20 tcp_keepinit = 150 udp_ephemeral_low = 32768

strturncnt = 15 ie5_old_multicast_mapping = 0 udp_ephemeral_high = 65535

pseintrstack = 12288 * rfc1323 = 1
54 RS/6000 SP System Performance Tuning

thewall

This is set to at least 25 percent of real memory. The maximum value you
can set this to is 65536 or 64 MB of memory except in AIX 4.3.2 where it is
131072 or 128 MB.

sb_max

This value should be at least twice the size of the largest value for
tcp_sendspace, tcp_recvspace, or udp_recvspace. This ensures that if
the buffer utilization is better than 50 percent efficient, the entire size of
the tcp and udp byte limits can be utilized.

tcp_sendspace

This is never higher than the major network adapter transmit queue limit.
To calculate this limit, use:

(major adapter queue size) * (major network adapter MTU)

tcp_recvspace

This is never higher than the major network adapter transmit queue limit.

(major adapter queue size) * (major network adapter MTU)

tcp_recvspace and tcp_sendspace

These tunables establish the size of the TCP window on a per-datagram
socket connection. The effective size used is the least common
denominator between the sending side tcp_sendspace and the receiving
side tcp_recvspace. The size depends on the network you are sending
over.

To properly set these tunables, you need a good understanding of the type
of traffic your application will be sending. For peak switch performance,
these need to be set to 512 KB or greater.

udp_sendspace

This is set to 65536 because anything beyond 65536 is essentially
ineffective. Since UDP transmits a packet as soon as it gets any data, and
since IP has an upper limit of 65536 bytes per packet, anything beyond
65536 runs the small risk of getting thrown away by IP.

udp_recvspace

This is a suggestion for a starting value for udp_recvspace is 10 times the
value of udp_sendspace, because UDP may not be able to pass a packet
to the application before another one arrives. Also, several nodes can
send to one node at the same time. To provide some staging space, this
size is set to allow 10 packets to be staged before subsequent packets are
SP Network Tunables 55

thrown away. For large parallel applications using UDP, the value may
have to be increased.

rfc1323

If you are setting tcp_recvspace and tcp_sendspace to greater than
65536, you need to set rfc1323=1 on each side of the connection. Without
having rfc1323 set on both sides, the effective values for tcp_recvspace
and tcp_sendspace will be 65536.

tcp_mssdflt

This tunable is used to set the maximum packet size for communication
with remote networks; however, only one value can be set even if there
are several adapters with different MTU sizes. It is the same as the MTU
for communication across a local network except for one small difference:
The tcp_mssdflt size is for the size of only the data in a packet. You need
to reduce the tcp_mssdflt for the size of any headers so that you send full
packets instead of a full packet and a fragment. The way to calculate this
is as follows:

MTU of interface - TCP header size - IP header size - rfc1323 header size

which is:

MTU - 20 - 20 - 12, or MTU - 52

Limiting data to MTU - 52 bytes ensures that, where possible, only full
packets will be sent.

CSS MTU size

The MTU of a switch is 65520. We suggest that you keep this setting.
However, under some circumstances (for example, when you want to avoid
the Nagle algorithm causing very slow traffic), it may be necessary to
reduce this value. You can reduce the MTU of a switch to 32678 with only
a two to 10 percent loss in throughput. However, CPU utilization will be
slightly higher due to the per-packet overhead.

To reduce the MTU of the switch, use:

ifconfig css0 mtu <new size>

This takes effect immediately and needs to be run as root user. You should
always use the same MTU across all nodes in an SP.
56 RS/6000 SP System Performance Tuning

6.3.1 Managing Tunable SP Parameters
The SP usually requires that tunable settings be changed from the default
values in order to achieve optimal performance of the entire system. How to
determine what these settings are is described in the sections that follow.
However, where to set these tunable values is very important. If they are not
set in the correct places, subsequent rebooting of the nodes or other changes
can cause them to change or be lost.

For all dynamically tunable values (those that take effect immediately) the
setting for each node should be set in the tuning.cust file. This file is found in
the /tftpboot directory on each node. There is also a copy of the file in this
same directory on the CWS. Tunables changed using the no, nfso, or vmtune

commands can be included in this file. Even though the sample files do not
include the nfso and vmtune commands, they can be added here with no
problems.

There are a small number of tuning recommendations that are not
dynamically tunable values that need to be changed in the rc.net file. These
tunables are for ARP cache tuning and setting the number of adapter types
per interface. The following tunables are the only ones that should be added
to rc.net:

• arptab_nb

• arptab_bsize

• arpqsize

• ifsize

There are several reasons why the tuning.cust file should be used rather than
rc.net for dynamically tunable settings:

• If you mess up rc.net, you can render the node unusable requiring a
reinstall of the node.

• If you partially mess up rc.net, getting to the node through the console
connection from the CWS can take several minutes or even over an hour.
This is because parts of the initialization of the node try to access remote
nodes or the CWS, and because rc.net is defective, each attempt to get
remote data takes nine minutes to time out and fail.

• If you mess up tuning.cust, at least the console connection will work
enabling you to log in through the CWS and fix the bad tunable settings.

• If you decide to create your own inittab entry to call a file with the tuning
settings, future releases of PSSP will require a tuning.cust set of tunables
to be run overriding your local modifications.
SP Network Tunables 57

• Tuning.cust is run from rc.sp; so, it will always be run on a reboot.

• Tuning.cust includes a stop and start of inetd as of PSSP Release 2.4,
which is required for all daemons to inherit the SP-specific tuning settings.

Using the sample tuning.cust settings selected as part of the install, the SP
nodes will at least function well enough to get up and running for the
environment type selected.

If the system has nodes that require different tuning settings, it is
recommended that a copy of each setting be saved on the CWS. When nodes
with specific tuning settings are installed, that version of tuning.cust needs to
be moved into /tftpboot on the CWS.

Another option is to create one tuning.cust file that determines the node
number and, based on that node number, sets the appropriate tuning values.

6.3.2 Initial Settings of SP Tunables
When a node is installed, migrated, or customized, and that node’s
boot/install server does not have a /tftpboot/tuning.cust file, a default file of
performance tuning variable settings in /usr/lpp/ssp/install/tuning.default is
copied to /tftpboot/tuning.cust on that node. You can choose from one of the
IBM-supplied tuning files, or you can create or customize your own. There are
four sample tuning files currently available. The existing files are located in
the /usr/lpp/ssp/install/config directory and are as follows:

• tuning.commercial contains initial performance tuning parameters for a
typical commercial environment.

• tuning.development contains initial performance tuning parameters for a
typical interactive and/or development environment. These are the default
tuning parameters.

• tuning.scientific contains initial performance tuning parameters for a
typical engineering/scientific environment.

• tuning.server.

The other option is to create and select your own alternate tuning file. While
this may not be the initial choice, it certainly must be the choice at some point
in time. On the CWS, create a tuning.cust file, or you can begin with an
IBM-supplied file. Edit the tuning.cust file with your favorite editor making
sure changes are saved. Once you are finished, proceed to the installation of
nodes. This tuning.cust file is then propagated to each node’s
/tftpboot/tuning.cust file from the boot/install server when the node is
installed, migrated, or customized and is maintained across reboots.
58 RS/6000 SP System Performance Tuning

6.4 Tuning the SP Network for Specific Workloads

This section describes four typical environments: Software Development,
Scientific and Technical, Commercial Database, and Server Configuration.
The settings given are only initial settings and are not guaranteed to be
optimized for your environment. They will get the system up and running fairly
well. You should look at your specific implementation and adjust your tuning
settings accordingly.

6.4.1 Tuning for Development Environments
The typical development environment on the SP consists of many users all
developing an application or running small tests of a system. On the SP, this
type of environment has lots of connections between the nodes using TCP/IP.
In this case, setting the TCP/IP parameters to more conservative values is an
approach to prevent exhaustion of the switch buffer pool areas. Most of the
high-speed tuning is not done in this environment because single connection
performance is not critical. What is important is that aggregate requirements
from several developers do not exhaust system resources.

Table 3 on page 60 provides network-tunable settings designed as initial
values for a development environment. These settings are only initial
suggestions. Start with them and realize you may need to change them.
Remember to keep track of your changes and document them.

In a typical development environment, only small packets are used, but lots
of sockets are active at one time.

Note
SP Network Tunables 59

Table 3. Software Development Tuning Parameters.

The way these initial values are derived is that the network traffic expected
consists of small packets with lots of socket connections. The tcp_sendspace
and tcp_recvspace parameters are kept small so that a single socket
connection cannot use up lots of network buffer space causing buffer space
starvation. It is also set so that high performance for an individual socket
connection is not expected. However, if lots of sockets are active at any one
time, the overall resources will enable high aggregate throughput over the
switch.

6.4.2 Tuning for Scientific and Technical Environments
The typical scientific and technical environment usually has only a few
network sockets active at any one time but sends large amounts of data. The
following information sets up the network tunables so that a single socket
connection or a few connections can get the full SP Switch bandwidth. In
doing this, however, you can cause problems on small packet networks like
Ethernet and Token Ring. This is the trade-off that has to be made to get peak
performance out of the SP system.

To get the best TCP/IP transfer rate, you need to size the TCP/IP window
large enough to keep data streaming across a switch without stopping the IP
stream. The switch has an MTU of 65520 bytes. This is the largest buffer of

Parameter Value

thewall 16384

sb_max 131072

subnetsarelocal 1

ipforwarding 1

tcp_sendspace 65536

tcp_recvspace 65536

udp_sendspace 32768

udp_recvspace 65536

rfc1323 1

tcp_mssdflt 1448

tcp_mtu_discover (new in AIX 4.2.1) 1

udp_mtu_discover (new in AIX 4.2.1) 1
60 RS/6000 SP System Performance Tuning

data that it can send. When using TCP/IP, TCP will send as many buffers as it
can until the total data sent without acknowledgment from the receiver
reaches the tcp_sendspace value.

Experimentation shows that having between four and eight buffers allows
TCP/IP to reach high transfer rates. The faster nodes require a greater
number of buffers. However, if you set tcp_sendspace and tcp_recvspace to
655360 bytes, it can hurt the performance of the other network adapters
connected to the node. This can cause adapter queue overflows described in
“Adapter Queue Size” on page 74.

The following settings are only initial suggestions. Start with them and realize
you may need to change them. Remember to keep track of your changes and
document them.

Table 4. Scientific and Technical Environment Tuning Parameters

6.4.3 Tuning for Commercial and Database Environments
The following table provides network tunable settings designed as initial
values for commercial and database user environments. These initial settings
are derived from the fact that commercial and database type applications
generally have lots of network connections between nodes. For environments
with lots of active connections, the tcp_sendspace and tcp_recvspace need
to be adjusted so that the aggregate amount of the TCP window across all

Parameter Value

thewall 16384

sb_max 1310720

subnetsarelocal 1

ipforwarding 1

tcp_sendspace 655360

tcp_recvspace 655360

upd_sendspace 65536

upd_recvspace 655360

rfc1323 1

tcp_mssdflt Varies depending on other network types

tcp_mtu_discover (new in AIX 4.2.1) 1

udp_mtu_discover (new in AIX 4.2.1) 1
SP Network Tunables 61

connections does not exceed the available buffer space for the SP Switch. In
commercial and database environments where only a few connections are
active, you can increase the tcp_sendspace and tcp_recvspace sizes to get
better per-connection performance over the switch.

These settings are only initial suggestions. Start with them and realize you
may need to change them. Remember to keep track of your changes and
document them.

Table 5. Commercial and Database Environment Tuning Parameters.

The way these initial values are derived is that the expected network traffic
consists of small packets with lots of socket connections. However, when
running a parallel database product, you want to be able to get as much SP
Switch throughput to a single connection as you can without causing
problems on other network adapters. The settings in the previous table are
also designed to enable a single socket to be able to send to an Ethernet
adapter without causing adapter queue overruns. In addition, the
tcp_sendspace and tcp_recvspace are large enough to get a majority of the
switch bandwidth at database size packets.

If other applications with vastly different network characteristics are run on
the same node, such as ADSM, or data mining type applications that tend to

Parameter Value

thewall 16384

sb_max 1310720

subnetsarelocal 1

ipforwarding 1

tcp_sendspace 262144

tcp_recvspace 262144

udp_sendspace 65536

udp_recvspace 655360

rfc1323 1

tcp_mssdflt 1448

tcp_mtu_discover (new in AIX 4.2.1) 1

udp_mtu_discover(new in AIX 4.2.1) 1
62 RS/6000 SP System Performance Tuning

use few sockets, these settings may not provide peak performance. In these
cases, the TCP window settings may have to be increased. Conflicts with the
settings needed by ADSM can be resolved by having ADSM do its own socket
level tuning. See Chapter 10, “ADSTAR Distributed Storage Manager (ADSM)
Tuning” on page 147 for more information.

6.4.4 Tuning for Server Environments
The server environment usually is a node serving a lot of data to one or many
other nodes on an SP. It can also be serving data to machines outside the SP
through gateway nodes. This environment puts the highest demands on
getting the aggregate amount of traffic for the SP Switch or TCP/IP buffer
pools. If a server node in an SP is potentially serving hundreds of requests or
connections, tcp_sendspace and tcp_recvspace need to be small. This
prevents a large number of large data requests from consuming the entire
switch and TCP/IP buffer pools.

In systems where there is one server and the rest of the nodes run an
application that needs larger tcp_sendspace and tcp_recvspace sizes, it is
acceptable to use different settings on the appropriate nodes. In this
situation, the nodes talking to each other use large TCP windows for peak
performance and, when talking to the server, use small windows. The
effective TCP window is the least common denominator of the tcp_sendspace
and tcp_recvspace values.
SP Network Tunables 63

The following table provides tunable network settings designed as initial
values for server environments.

Table 6. Server Tuning Parameters.

Parameter Value

thewall 65536

sb_max 1310720

subnetsarelocal 1

ipforwarding 1

tcp_sendspace 65536

tcp_recvspace 65536

udp_sendspace 65536

udp_recvspace 655360

rfc1323 1

tcp_mssdflt 1448

tcp_mtu_discover (new in AIX 4.2.1) 1

udp_mtu_discover (new in AIX 4.2.1) 1
64 RS/6000 SP System Performance Tuning

6.4.5 Summary of Workload Tunables
Table 7 gives a combined overview of our tunables for the different
environments.

Table 7. Summary of Workload Tunables.

Parameter Commercial Server S&T Dvlpmnt.

thewall 16384 65536 16384 16384

sb_max 1310720 1310720 1310720 131072

subnetsarelocal 1 1 1 1

ipforwarding 1 1 1 1

tcp_sendspace 262144 65536 655360 65536

tcp_recvspace 262144 65536 655360 65536

udp_sendspace 65536 65536 65536 32768

udp_recvspace 655360 655360 655360 65536

rfc1323 1 1 1 1

tcp_mssdflt 1448 1448 Varies
depending
on other
network
types

1448

tcp_mtu_discover (new in AIX
4.2.1)

1 1 1 1

udp_mtu_discover (new in
AIX 4.2.1)

1 1 1 1
SP Network Tunables 65

66 RS/6000 SP System Performance Tuning

Chapter 7. Adapter Tuning

Many types of network adapters are supported in an RS/6000 SP
environment. When data is sent, it is passed through the TCP/IP layers to the
device drivers. Therefore, tuning the network interfaces is critical to
maintaining peak throughput for network traffic.

7.1 Maximum Transmission Unit (MTU)

The Maximum Transmission Unit (MTU) specifies the maximum size of
packets (including all the protocol headers) that can be transmitted on a
network. For an overview, see Figure 20 on page 69. All nodes and/or
systems on the same physical network must have the same MTU. The MTU
can be displayed using the netstat -i command. Table 8 gives an overview of
common network adapters and their related MTU sizes.

Table 8. Maximum Transmission Units

The MTU value can be changed per adapter using the ifconfig command or
through SMIT. Because all systems on the same physical network should
have the same MTU, any changes should be made simultaneously. The
change is effective across system boots.

7.2 Maximum Segment Size (MSS)

The Maximum Segment Size (MSS) is the largest segment or chunk of data
that TCP will send to a destination. Figure 20 on page 69 shows the relations
between MSS and MTU. The value of MSS is determined as follows:

Network Type Default MTU Maximum MTU Optimal

Ethernet 1500 1500 1500

Token Ring 1492 17284 4096
8500 for NFS traffic

Escon 1500 4096 4096

FDDI 4352 4352 4352

ATM 9180 65530 9180

HiPS 65520 65520 65520

SP Switch 65520 65520 65520

HiPPI 65536 65536 65536
© Copyright IBM Corp. 1999 67

1. If the destination is local, that is, if the network ID and the subnet ID of the
destination IP address are the same as the local ones, the MSS value is
calculated based on the MTU value of the outgoing interface as follows:

MSS = MTU - (20 + 20) if rfc1323 = 0

MSS = MTU - (20 + 20 + 12)if rfc1323 = 1

since the TCP header is 20 bytes, and the IP header is also 20 bytes long.
Furthermore, enabling rfc1323 costs an additional 12 bytes.

2. If the destination address is remote, that is, if the network ID of the
destination IP address is different from the local one, TCP uses a global
variable that determines the MSS.

3. If the destination has the same network ID as the local one but with a
different subnet ID, the destination can be either local or remote. The no
option of subnetsarelocal lets you specify whether subnets on the same
network are local or remote. If local, follow item (1) above. If remote,
follow item (2) above.

Since segmentation occurs at the TCP level, if the total packet is less than
the MTU, IP does not do anything to the packet other than preappend a
header and send the data to the interface layer. TCP on the receiving side will
reassemble the packet in the correct sequence and deliver the data to the
application.

7.3 TCP Data Flow

In order to comply with the MSS, TCP breaks the data into smaller pieces
called segments. See also Figure 20 on page 69. The resulting IP datagram
is 40 or 52 bytes larger: 20 bytes for the IP header and 20 bytes for the TCP
header and an optional 12 bytes for rfc1323.
68 RS/6000 SP System Performance Tuning

Figure 20. TCP Data Flow

When a connection is established, each end has the option of announcing the
tcp_sendspace it is willing to receive depending upon its buffer space. Since
the moving-window technique requires that the two systems be able to buffer
the same amount of data, the effective window size is set to the lesser value
in both directions. The nominally available extra space for buffering output
shown in Figure 21 is never used.

Figure 21. TCP Window Size

MTU

DATA

TCP DATATCP TCP

TCPIP IP DATATCP IP TCP

TCPIPLINK LINK IP DATATCP LINK IP TCP

MSS

MTUMTU MTU

MTU=XXX MTU=YYY

tcp_mssdflt=min(XXX,YYY)
Default: 512 bytes

For Addresses that Match the Local Network Mask

if (subnetsarelocal)
use MTU

or
if not (subnetsarelocal)

use tcp_mssdflt
or

if not (tcp_pmtu_discover)
probe max packet size

tcp_sendspace

Initiator

tcp_recvspace

Maximum
window
size

Listener

tcp_recvspace tcp_sendspace

Unused
Adapter Tuning 69

In general, the larger the MSS the better, as long as it is not so large that it
causes fragmentation at the IP layer.

7.4 TCP Sliding Window

TCP enforces flow control of data from the sender to the receiver through a
mechanism referred to as sliding window. This helps ensure delivery to a
receiving application. The size of the window is defined by the tcp_sendspace
and tcp_recvspace values.

The window is the maximum amount of data that a sender can send without
receiving any ACK segment. This, obviously, contributes to performance
improvement. A receiver always advertises its window size in the TCP header
of the ACK segments.

In the example in Figure 22, the sending application is sleeping because it
has attempted to write data that would cause TCP to exceed the send socket
buffer space (that is, tcp_sendspace). The sending TCP has sent the last part
of rec5, all of rec6 and rec7, and the beginning of rec8. The receiving TCP
has not yet received the last part of rec7 or any of rec8.

Figure 22. TCP Sliding Window

ec5 rec6 rec7 rec8

ec5 rec6 rec

Sender TCP

Receiver TCP

rec4 r...

Receiving Application
(processing)

Available space for the
data that is in transit

Data Stream

Unacknowledged
Data

Acknowledged
Data Sending Application

(sleeping)

Transmit Window

Receive Window
70 RS/6000 SP System Performance Tuning

The receiving application got rec4 and the beginning of rec5 when it last read
the socket, and it is now processing that data. When the receiving application
next reads the socket, it will receive (assuming a large enough read) the rest
of rec5, rec6, and as much of rec7 and rec8 as has arrived by that time.

In the course of establishing a session, the initiator and the listener converse
to determine their respective capacities for buffering input and output data.
The smaller of the two sizes defines the size of the effective window. As data
is written to the socket, it is moved into the sender’s buffer. When the receiver
indicates that it has space available, the sender transmits enough data to fill
that space (assuming that it has that much data). It then informs the sender
that the data has been successfully delivered. Only then does the sender
discard the data from its own buffer effectively moving the window to the right
by the amount of data delivered. If the window is full because the receiving
application has fallen behind, the sending thread will be blocked.

Nowadays, we have a lot of high-speed network media and memory for a
workstation. The maximum of 64 KB for a window may not be big enough for
such an advanced environment. TCP has been enhanced to support such
situations by RFC 1323, TCP Extensions for High Performance.

If the rfc1323 parameter is 1, the maximum TCP window size is 4 GB (instead
of 64 KB). Figure 23 on page 72 illustrates this TCP enhancement.
Adapter Tuning 71

Figure 23. rfc1323 - TCP Extension

There is, of course, no such thing as free function. The additional operations
performed by TCP to ensure a reliable connection result in about seven to 12
percent higher CPU time cost than in UDP.

There are two technical terms about TCP windows that you may sometimes
get confused. A window is a receiver's matter telling how much data the
receiver can accept. There is also the term send window, which is a sender's
matter. They are the same thing, but on some occasions when the congestion
avoidance algorithm is working (see below), they represent different values to
each other.

Also, many improvements have been made to the TCP sliding window
mechanism. Here is a brief list of these improvements in RFC 1122:

• Silly Window Syndrome Avoidance Algorithm

The Silly Window Syndrome (SWS) is caused when a large amount of
data is transmitted. If the sender and receiver do not implement this

Window Size

rfc1323 = 1 4 Gbytes (2)32

rfc1323 = 0 64 Kbytes (2)16

rfc1323 = 0

Ethernet

ACK

45 TCP messages

1500 1500 1500 1500

Switch

1 TCP message

64k

NETWORK

64KMax.

NETWORK

> 64K

Ethernet

Limited bymax. outstanding data
on the adapter

1500 1500 1500 1500 1500 1500 1500

Switch 64k

Limited bymax. outstanding data
on the adapter

64k 64k

rfc1323 = 1

ACK ACK ACK ACK ACK ACK ACK ACK ACK ACK ACK

ACK ACK ACK ACK ACKACK
72 RS/6000 SP System Performance Tuning

algorithm, the receiver advertises a small amount of the window each time
the receiver buffer is read by an application. As a result, the sender has to
send a lot of small segments, which do not have the advantage of bulk
data transfer; that is the purpose of the window mechanism. This
algorithm is mandated by RFC 1122.

• Delayed ACKs

TCP should not immediately send back an ACK segment because there
will not be any data soon that can be sent with the ACK. As a result, the
network traffic and protocol module overhead will be reduced. With this
mechanism, an ACK segment is not returned immediately. This
mechanism is optional (strongly recommended) by RFC 1122.

• Nagle Algorithm

When an application issues many write system calls with a single byte of
data or so, TCP should not send data segments carrying only a single byte
of data. In order to avoid this inefficiency, data should not be sent until the
ACK of the prior data segment is received. This mechanism accumulates
small segments into one big segment before it is sent out. This
mechanism is optional by RFC 1122.

Certain applications, such as X-Windows, do not work well with this
mechanism. Thus, there must be an option to disable this feature. For this,
you can use the TCP_NODELAY option of the setsockopt() call. For more
information about the Nagle Algorithm, see “The Nagle Algorithm” on
page 133.

Note
Adapter Tuning 73

• Congestion Avoidance

When a segment is lost, the sender's TCP module considers that this is
due to the congestion of the network and reduces the send window size by
a factor of 2. If the segment loss continues, the sender's TCP module
keeps reducing the send window using the previous procedure until it
reaches 1. This mechanism is mandated by RFC 1122.

• Slow Start

If network congestion is resolved, the minimized send window should be
recovered. The recovery should not be the opposite of shrinking
(exponential backoff). This mechanism defines how to recover the send
window. It is mandated by RFC 1122.

7.5 Adapter Queue Size

The high throughput of a switch can cause problems with network adapters
such as Ethernet, Token Ring, and FDDI connected to nodes acting as
gateways on SP systems. There is a fixed number of adapter queue slots to
stage packets in each network adapter device driver for traffic to that network.
The transmit adapter queue length specifies the maximum number of packets
for the adapter. The SP Switch send and receive pools are separate buffer
pools as shown in Figure 24.
74 RS/6000 SP System Performance Tuning

Figure 24. Adapter Queue Overview

If the adapter queue size is exceeded, subsequent packets are discarded by
the adapter device driver resulting in dropped packets. This results in a
transmit time-out in the TCP layer, which leads to a rollback of the TCP
window and the resending of data. For UDP, the result is lost packets.

Adapter queue overflows can be detected by looking at the errors logged in
the adapter counters as S/W Transmit Queue Overflows. For Ethernet, Token
Ring, FDDI, and ATM, the adapter statistics can be seen by using the entstat ,
tokstat , fddistat and atmstat commands.

Most communication drivers provide a set of tunable parameters to control
transmit and receive resources. These parameters typically control the
transmit queue and receive queue limits but may also control the number and
size of buffers or other resources. They limit the number of buffers or packets
that may be queued for transmit or limit the number of receive buffers that are
available for receiving packets. For an example, see Table 9 on page 76.
These parameters (for AIX 4.2.1 and newer) can be tuned to ensure enough

Memory

Memory

Node

Transmit Queue Receive Queue

Network

Adapter
Adapter Tuning 75

queueing at the adapter level to handle the peak loads generated by the
system or the network.

Table 9. Transmit Queue Size Examples

7.5.1 Transmit and Receive Queues
For transmit, the device drivers may provide a transmit queue limit. There
may be both hardware queue and software queue limits depending on the
driver and adapter. Some drivers have only a hardware queue and some
have both hardware and software queues. Some drivers control the hardware
queue internally and only allow the software queue limits to be modified.
Generally, the device driver will queue a transmit packet directly to the
adapter hardware queue. If the system CPU is fast relative to the speed of
the network, or on an SMP system, the system may produce transmit packets
faster than they can be transmitted on the network. This will cause the
hardware queue to fill. Once the hardware queue is full, some drivers provide
a software queue and subsequent packages will be queued to it. If the
software transmit queue limit is reached, the transmit packets are discarded.
This can affect performance because the upper level protocols must then
retransmit the discarded packets.

A typical example would be that you set your adapter queue length to 30.
Assuming that the MTU of that adapter is 1500, you have set the maximum
amount of data which that adapter can hold to 45,000 bytes. This is less than
a single packet from a switch. Figure 25 on page 77 illustrates the different

Adapter Default Range

MCA Ethernet 512 20 - 2048

10/100 Ethernet 64 16,32,64,128,256

Token Ring 99 or 512 32 - 2048

FDDI 512 3 - 2048

ATM / 155 ATM 512 0 - 2048

PCI Ethernet 64 16,32,64,128,256

10/100 Ethernet 256 - 512 16,32,64,128,256

Token Ring 96 - 512 32 - 2048

FDDI 30 3 - 250

155 ATM 100 0 - 4096
76 RS/6000 SP System Performance Tuning

MTU ratios. If you try and stage more packets to an adapter, the packets that
arrive when this queue is full get thrown away.

Figure 25. MTU Ratio

Receive Queues are the same as transmit hardware queues.

7.5.2 Displaying Adapter Queue Settings
To show the adapter configuration settings, you can use the lsattr command
or SMIT. For example, to display the default values of the settings, you can
use the command

lsattr -D -l <adapter - name>

and to display the current values, you can use

lsattr -E -l <adapter - name>

Finally, to display the range of legal values of an attribute (for example,
xmt_que_size) for a given adapter (for example, Token Ring), you can use
the command

lsattr -R -l tok0 -a xmt_que_size

Network
Type

Maximum
MTU

Ratio to
Ethernet

Ethernet

FDDI

Token
Ring

SP Switch

1500

4352

17284

65520

1

2.9

11.5

43.7
Adapter Tuning 77

Different adapters have different names for these variables. For example,
they may be named sw_txq_size, tx_que_size, or xmt_que_size to name a
few for the transmit queue parameter. The receive queue size and/or receive
buffer pool parameters may be named rec_que_size, rx_que_size, or
rv_buf4k_min, for example.

Below is the output of a lsattr -E -l atm0 command on an IBM PCI 155 Mbps
ATM adapter. This shows sw_xq_size set to 250 and the rv_buf4K_min
receive buffers set to 48.

Figure 26. lsattr Command Output for an ATM Adapter

7.5.3 Changing Adapter Settings
The easiest way to change the adapter settings is by using SMIT. The other
method is to use the chdev command.

For example, to change tx_que_size on en0 to 1024, use the following
sequence of commands. Note that this driver only supports four different
sizes; so, it is better to use SMIT to see the valid values.

ifconfig en0 detach

chdev -1 ent0 -a tx_que_size=1024

ifconfig en0 up

ma-mem 0x400000 N/A False
regmem Oxlff88000 Bus Memory address of Adapter Registers False
virtmem Oxlff90000 Bus Memory address of Adapter Virtual Mem False
busintr 3 Bus Interrupt Level False
intr_priority 3 Interrupt Priority False
use_alt_addr no Enable ALTERNATE ATM MAC address True
alt_addr OX0 ALTERNATE ATM MAC address (12 hex digits) True
sw_txq_size 250 Software Transmit Queue size True
max_vc 1024 Maximum Number of VCs Needed True
min_vc 32 Minimum Guaranteed VCs Supported True
rv_buf4k_min 0x30 Minimum 4K-byte premapped receive buffer True
interface_typ 0 Sonet or SH interface True
adapter_clock 1 Provide SONET Clock True
uni_vers autot_detect N/A True
78 RS/6000 SP System Performance Tuning

7.5.4 Adapter Tuning Recommendations
If you consistently see output errors when running the netstat -i command,
increasing the size of the xmt_que_size parameter may help. Also, check the
adapter transmit average overflow count. As a rule of thumb, always set
xmt_que_size to the maximum.

One way to tune IP to prevent exceeding the adapter queue size is to reduce
the aggregate TCP window size or udp_sendspace so that it is less than the
transmit queue size times the segment size (MTU) on the network. Usually,
this results in optimal throughput and slightly higher system overhead for
network traffic. If multiple connections are sharing an adapter at the same
time, the aggregate TCP window size across all connections should be
slightly less than the transmit queue size times the segment size for the
network media type.

7.6 Switch Adapter Tuning

The switch network is something unique for an SP system. It provides high
performance connections for all nodes. Therefore, correct tuning of the switch
adapters is essential for good overall system performance.

7.6.1 Switch Adapter Pools
PSSP provides two variables to tune the sizes of the switch adapter pools:

• rpoolsize - size of SP Switch device driver receive pool in bytes

• spoolsize - size of SP Switch device driver send pool in bytes

These pools are used to stage the data portion of IP packets for the switch.
However, the allocation and sizes utilized from the pools can cause buffer
starvation problems. The send pool and receive pool are separate buffer
pools: one for outgoing data (send pool) and one for incoming data (receive
pool). When an IP packet is passed to the switch interface and the size of the
data is large enough, a buffer is allocated from the pool. If the amount of data
fits in the IP header mbuf used in the mbuf pool, no send pool space is
allocated for the packet. The amount of data that will fit in the header mbuf is
a little less than 200 bytes depending on what type of IP packet is being sent.
The header size varies between UDP and TCP, or having rfc1323 turned on.

To see the current send pool and receive pool buffer sizes as shown in Figure
27, issue the lsattr -E -l css0 command.
Adapter Tuning 79

Figure 27. Viewing Send and Receive Pool Buffer Sizes

In this particular example, the pool sizes have been increased from the
default size of 512 KB to 2 MB. The pool settings can be changed using the
chgcss command and require rebooting the node.

For example, to change the size of both pools to 1 MB, enter:

chgcss -l css0 -a rpoolsize=1048576 -a spoolsize=1048576

The switch adapter pools reside in pinned kernel memory.

7.6.2 Switch Pool Allocation
The size of the buffers allocated by the switch device driver starts at 4096
bytes and increases to 65536 bytes in values of powers of 2. See Figure 28
on page 81 for an overview.

If the size of the data being sent is just slightly larger than one of these sizes,
the buffer allocated from the pool is the next size up. This can cause as little
as 50 percent efficiency in buffer pool usage. More than half of the pool can
go unused in bad circumstances.

lsattr -E -l css0
bus_mem_addr 0x04000000 Bus memory address False
int_level 0xb Bus interrupt level False
int_priority 3 Interrupt priority False
dma_lvl 8 DMA arbitration level False
spoolsize 2097152 Size of IP send buffer True
rpoolsize 2097152 Size of IP receive buffer True
adapter_status css_ready Configuration status False
80 RS/6000 SP System Performance Tuning

Figure 28. Switch Pool Allocation

When assembling TCP/IP packets, there is always one mbuf from the IP mbuf
pool used to assemble the packet header information in addition to any data
buffers from the spool. If the mbuf pool size is too small and the system runs
out of mbufs, the packet is dropped. The mbuf pool is used globally for all IP
traffic and set using the thewall tunable with the no command.

When sending 4 KB of data over the switch, an mbuf from the mbuf pool will
be used as well as one 4 KB spool buffer for the data. If the amount of data
being sent is less than 200 bytes, no buffer from the spool is allocated since
there is space in the mbuf used for assembling the headers to stage the data.
However, if sending 256 bytes of data, you will end up using one mbuf for the
IP headers and one 4 KB send pool buffer for the data. This is the worst case,
where you are wasting 15/16 of the buffer space in the send pool. These
same scenarios apply to the receive pool when a packet is received on a
node.

The key for peak efficiency of the spool and rpool buffers is to send
messages that are at or just below the buffer allocation sizes or less than 200
bytes.

64K

32K

16K

8K 4K
Adapter Tuning 81

7.6.3 Switch Buffer Pool Allocation Considerations
When tuning the rpool and spool, it is important to understand the network
traffic expected. As we have seen, if the size of the buffers for the
applications is not ideal, much of the spool and rpool will be wasted. This can
cause the need for a larger rpool and spool because of inefficient usage.
When allocating the rpool and spool, realize that this space is pinned kernel
space in physical memory. This takes space away from user applications and
is particularly important in small memory nodes.

If there are a small number of active sockets, there is usually enough rpool
and spool space that can be allocated. In systems where a node has a large
number of sockets opened across the switch, it is very easy to run out of
spool space when all sockets transmit at once. For example, 300 sockets,
each sending 33 KB of data, will far exceed the 16 MB limit for the spool. Or,
1100 sockets, each sending 1 KB packets, will also exceed the maximum
limit.

On the receive side of a parallel or client/server implementation, where one
node acts as a collector for several other nodes, the rpool runs into the same
problem. Four nodes, each with 600 sockets, each sending two 1 KB packets
to one node, will exceed the rpool limit, but, those same sockets, each
sending twice as much data (4 KB in one 4 KB packet), will work. The key
here is to send a single larger packet rather than several smaller ones.

Another factor that aggravates exhaustion of the pools is SMP nodes. Only
one CPU is used to manage the send or receive data streams over the
switch. However, each of the other CPUs in the SMP node is capable of
generating switch traffic. As the number of CPUs increases, so does the
aggregate volume of TCP/IP traffic that can be generated. For SMP nodes,
the spool size should be scaled to the number of processors when compared
to a single CPU setting.

7.6.4 Sizing Send and Receive Pool Requirements
When trying to determine the appropriate rpool and spool sizes, you need to
get a profile of the message sizes that are being sent by all applications on a
node. This will help to determine how the rpool and spool will be allocated in
total number of buffers. At a given pool size, you will get 16 times as many
buffers allocated out of the pool for 4 KB messages as for 64 KB messages.

Once you have a profile of the packet or buffer sizes used by all applications
using the switch on a node, you can determine roughly how many of each
size spool or rpool buffers will be needed. This determines your initial rpool
and spool settings.
82 RS/6000 SP System Performance Tuning

The sizes allocated from the pool are not fixed. At any point in time, the
device driver will divide the pool up into the sizes needed for the switch traffic.
If there is free space in the send pool, and smaller buffers than the current
allocation has available are needed, the device driver will carve out the small
buffer needed for the current packet. As soon as the buffer is released, it is
joined back with the rest of the 64 KB buffer it came from. The buffer pool
manager tries to return to 64 KB block allocations as often as possible to
maintain high bandwidth at all times. If the pool was fragmented and a large
buffer needed 64 KB, there may not be 64 KB of contiguous space available
in the pool. Such circumstances would degrade performance for the large
packets. If all buffer space is used, the current packet is dropped, and TCP/IP
or the application needs to resend it expecting that some of the buffer space
was freed up in the meantime. This is the same way that the transmit queues
are managed for Ethernet, Token Ring, and FDDI adapters. If these adapters
are sent more packets than their queues can handle, the adapter drops the
packets.

Currently, the upper limit for the send pool and receive pool is 16 MB each.
This means you can get a maximum of 4096 4 KB or 256 64 KB buffers each
for sending and receiving data.

Use the vdidl3xx commands shown in Table 10 to check for IP pool size
problems indicated by slow network traffic or ENOBUF errors.

Table 10. vdidl3xx Commands

For possible receive pool problems, check the errpt output and look for mbuf
pool threshold exceeded entries for css0 device.

Figure 29 on page 84 is a sample output of the first table from the vdidl3

command.

SP Switch Adapter Type Command

TB3 vdidl3 -i

SPSMX vdidl3mx -i

TB3PCI vdidl3pci -i
Adapter Tuning 83

Figure 29. Output of the vdidl3 Command

The fields of the vdidl3 command are as follows:

bkt This lists the pool allocation in powers of 2 for the line it is on. The
line starting with 12 means 2 to the 12th or 4 KB allocations. The
line starting with 16 means 2 to the 16th or 64 KB allocations.

allocd This lists the current allocations for each of the size allocations in
the first column at the time the command is run. This is an
instantaneous value and, therefore, can increase and decrease
from one execution of the command to the next.

free This lists the number of buffers of each allocation that are
allocated and unused at the time the command is run. In the
above example, there are eight 64 KB allocations free for use.
This is an instantaneous value and, therefore, can increase and
decrease from one execution of the command to the next.

success This increments every time an allocation of the given size
succeeds. This counter is cumulative and, therefore, shows the
number of successes since the adapter was last initialized.

fail This increments every time an allocation is not available for the
size requested. This counter is cumulative and, therefore, shows
the number of fails since the adapter was last initialized.

split This indicates how many times the allocation size was extracted
from the pool by carving the size needed from a larger allocation
in the pool. This counter is cumulative and, therefore, shows the
number of splits since the adapter was last initialized.

comb This is currently not used.

freed This is currently not used.

#/usr/lpp/ssp/css/vdidl3 -i
send pool: size=524288 anchor@=0x50002000 start@=0x50e70000
tags@=0x50c1c200
bkt allocd free success fail split comb freed

12 0 0 409 0 316 0 0
13 0 0 220 0 161 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 8 0 0 0 0 0
84 RS/6000 SP System Performance Tuning

7.6.5 Sample Switch Send Pool Size Estimate
In this section, we calculate the switch pool requirements for a common
distribution of packet sizes. In our example, the node stages a mix of packet
sizes of which 25 percent are smaller than 200 bytes, 50 percent are 5 KB,
and 25 percent are 32 KB.

Buffer Size profile:

Less than 200 bytes 25 percent

5 KB packets 50 percent

32 KB packets 25 percent

Aggregate tcp_sendspace equivalent in packets: 1024 packets

Total send pool space:

No space needed for small packets 0 MB

512 - 8 KB buffers for 5 KB packets 4 MB

256 - 32 KB buffers for 32 KB packets 8 MB

Total send pool space needed 12 MB

If the number of packets staged at any one time is 1024, the spool initial
setting should be 12582912 or 12 MB. None of the small packets needs any
spool space; the 5 KB packets each use 8 KB out of the spool and need
about 4 MB of space, and the 32 KB packets need about 8 MB of spool
space. The total estimated pool size needed is 12 MB.

The above calculation is a conservative estimate in that it assumes all
packets will be staged at once. In reality, as packets are being staged into the
pool, other packets are being drained out; so, the effective number of active
buffers should be less.

7.6.6 Reducing Send/Receive Pool Requirements
Reducing the TCP window size across sockets reduces the amount of send
pool buffer space required on the sender side and receive pool buffer space
required on the receiver side. Realize, however, that reducing the window
size could affect the switch performance by limiting the maximum amount of
outstanding data. Consider this as a trade-off. The exact setup will depend on
the application requirements.
Adapter Tuning 85

Also, reducing the number of sockets sending data through the switch
simultaneously will reduce send pool requirements. This is true when the
same amount of data must be sent using fewer sockets; this will not reduce
the requirement and, probably, will not affect the overall performance of the
application.

Finally, be aware that changes on the sender side will affect the receiver; so,
always keep in mind that tuning involves both sides of a network connection.

7.7 SP Ethernet Tuning

There are three areas to consider when tuning an SP Ethernet network:

• Number of frames

• Number of nodes

• Number of networks

The lower the amount of traffic in each Ethernet network, the better the
performance or response time of the system. If you run a small system of
fewer than two frames, you probably connected the SP network to your own
network through a gateway. For larger configurations, we suggest that you
dedicate one node per frame as a gateway to the rest of the SP system.
Routing from the gateway node can be done either through the SP Ethernet
or across a switch.

In the case where an Ethernet switch is used, the best way to connect
external Ethernets to the SP is through separate Ethernet adapters on nodes
that route the external traffic over the switch. Having too many external
Ethernet connections route through the SP Ethernet can lead to congestion.
This can cause the system to slow down.

When routing across a switch, you should give careful consideration to other
traffic moving across the switch. An environment which has many parallel
jobs will suffer in performance if a lot of the user traffic is routed through the
SP Switch adapter to that same node.

In larger SP system configurations, the network topology and the name
server can cause problems. If there are many name server queries at the
same time and the topology from a node to the name server is complex,
performance can suffer. Under these circumstances, there are three possible
solutions:

1. Create a name server within the SP system complex so that you are not at
risk for traffic problems to an external name server.
86 RS/6000 SP System Performance Tuning

2. Do not use the name server, but create an /etc/hosts file of all addresses
that the SP system and the applications need, and change the nodes to
resolve their addresses locally.

3. Specify the name lookup hierarchy to first look locally in the /etc/hosts file,
then the name server.

7.8 Token-Ring Performance Tuning Recommendations

The default MTU of 1492 bytes is appropriate for token rings that interconnect
to Ethernets or to heterogeneous networks in which the minimum MTU is not
known.

Unless the LAN has extensive traffic to outside networks, the MTU should be
increased to 8500 bytes. This allows NFS 8 KB packets to fit in one MTU.
Further increasing the MTU to the maximum of 17000 bytes seldom results in
corresponding throughput improvement.

The application block size should be in multiples of 4096 bytes.

7.9 FDDI Performance Tuning Recommendations

Despite the comparatively small MTU, this high-speed medium benefits from
substantial increases in socket buffer size.

Unless the LAN has extensive traffic to outside networks, the default MTU of
4352 bytes should be retained.

For maximum throughput, an application using TCP should write multiples of
4096 bytes at a time (preferably 8 KB or 16 KB) where possible.

7.10 ATM Performance Tuning Recommendations

Unless the LAN has extensive traffic to outside networks, the default MTU of
9180 bytes should be retained. ATM traffic routed over the SP Switch will
benefit from MTUs up to 64 KB.

For maximum throughput, an application using TCP should write multiples of
4096 bytes at a time (preferably 8 KB or 16 KB) where possible.
Adapter Tuning 87

7.11 HIPPI Performance Tuning Recommendations

The default MTU of 65536 bytes should not be changed.

For maximum throughput, an application using TCP should write 65536 bytes
at a time where possible.

Set sb_max to a value greater than 2*655360.

TCP and UDP socket send and receive space defaults should be set to more
than 64 KB.

7.12 Escon Interface Tuning

To achieve peak TCP/IP throughput over a switch and through Escon to MVS,
you need to make sure that the maximum packet size possible is used over
the Escon connection. Table 11 lists all the necessary parameters to tune for
a maximum packet size of 4096 bytes.

Table 11. Escon Interface Tuning Parameters.

These settings ensure that the maximum packet size across the interface will
be a full Escon interface packet of 4096 bytes. These settings generally
enable peak throughput over the Escon interface. Recent releases of TCP/IP
on MVS support window scaling known as rfc1323. You may be able to
increase the window size of the connection by setting rfc1323 to 1 on the SP.
You want to avoid setting the TCP window larger than 256 KB, which is the
recommended maximum buffer area on the MVS side of the socket
connection.

Parameters MVS/
TCP/IP

AIX Escon
Gateway
node

Explanation

Segment Size 4096 _ Maximum packet size

DATABUFFERSIZE 256K _ The DATABUFFERSIZE variable on
MVS TCP/IP must be set to 256 KB.

Escon Interface MTU _ 4096 On the Escon gateway node, set the
Escon interface MTU to 4096.

ipforwarding _ 1 On the Escon gateway node, set
ipforwarding to 1.

tcp_mssdflt _ 4056 On the nodes across the switch
from the Escon gateway node, set
tcp_mssdflt to 4056.
88 RS/6000 SP System Performance Tuning

Chapter 8. Global File Systems Tuning

In this chapter, we look at the most commonly used global file systems in an
SP, NFS and GPFS. Since GPFS requires VSD, we also look at this
subsystem.

8.1 Network File System Tuning on the SP

Network File System (NFS) is a distributed file system implementation that
provides remote transparent access to files and file systems. Originally
implemented and introduced as a product of Sun Microsystems, it has been
implemented by many other vendors. Many of these implementations are
licensed implementations of the Sun Microsystems source. AIX NFS is one
such implementation.

8.1.1 NFS Overview
NFS operates on a client/server basis; that is, files that are physically
resident on a server disk or other permanent storage are accessed through
NFS on a client machine. For an illustration, see Figure 30 on page 90. In this
sense, NFS is a combination of a networking protocol, client and server
daemons, and kernel extensions.
© Copyright IBM Corp. 1999 89

Figure 30. NFS Overview

8.1.1.1 The Role of nfsd and biod
nfsd is a server daemon and biod is a client daemon.

On the server side, the receipt of one NFS protocol request from a client
requires an nfsd daemon until that request is satisfied and the results of the
request processing are sent back to the client. The nfsd daemons are active
agents providing NFS services.

On the client side, one biod (block I/O daemon) is required to send one read
or write request to the server. Biods are only used for reading and writing
files. Other NFS operations, such as name lookup, get file attributes, and so
on are sent directly to the server from the AIX NFS client kernel extension.

8.1.2 Large-Scale Environment Considerations
When considering overall aspects of NFS performance, it is important to
understand your system environment. Some of the tuning techniques that are
discussed will help overall NFS performance. Other techniques may be
unnecessary or may degrade performance when applied in the wrong
environment.

DISK

Local File
Access

Application

biod biod biod

UDP

IP

INTERFACE

MTU

CACHE

Local File
Access

Application

biod biod biod

UDP

IP

INTERFACE

MTU

CACHE

DISK

Local File
Access

CACHE

M
T

U

UDP

IP

INTERFACE

nfsd nfsd nfsd

DISK
90 RS/6000 SP System Performance Tuning

The first and most important step in planning for a large-scale NFS
installation is to make a thorough evaluation of how the application
environment and user requirements translate into server requirements.

If there is an existing NFS environment that is running an application load
similar to the one that is being planned, it is a simple process to get a profile
of the workload using the nfsstat -s command on the server. If there is more
than one server running with the expected application load, both should be
monitored.

8.1.3 NFS Troubleshooting
NFS read and write requests generally involve the greatest latencies and
move the largest volumes of data; so, if problems occur, they usually show up
in reading or writing. Typically, performance starts to degrade when an NFS
client begins getting timeouts and retransmits.

If something happens on the network that causes even one fragment of a
read reply to be lost, the IP layer on the client will throw away the remaining
fragments. In that case, the whole read request will have to be rerequested
and retransmitted. The rerequest will be generated by the biod that made the
initial request if it does not receive the reply in a fixed amount of time. But,
when a timeout occurs, one of two actions can be taken: It can try the request
again (a retransmit) or it can just give up and return an error.

In the case of soft mounts, the RPC call will try some set number of times and
then quit with an error. The default for NFS calls is three retransmits on a soft
mount. For a hard mount, it will keep trying forever.

It is important to understand that if a packet is lost on the network or dropped
at the server, the full timeout interval will expire before the packet is
retransmitted from the client. There is no intermediate ack mechanism that
will inform the client, for example, that the server only received five of the
expected six write fragment packets.

When you consider that you expect RPC requests to be normally completed
in some very small fraction of a second, it is easy to see how repeated
timeouts will have huge impacts on performance. Timeouts and the relatively
large latencies involved when they occur are the basis for most poor
performance. The challenge of diagnosing a large number of performance
problems is determining exactly where the packets are being dropped and/or
delayed.

Statistics can be queried at several different network and system layers to
determine whether there are network failures, all of which can affect NFS.
Global File Systems Tuning 91

8.1.4 Checklist for NFS Tuning
In this section, we develop a checklist for your NFS tuning work.

Use nfsstat output on the client to watch for timeout/retransmit occurrences.
Timeouts and retransmits indicate poor performance and must be eliminated
for optimum results. Also, use nfsstat output to correlate timeouts/retransmits
on clients with server drop statistics gathered from the netstat command
(socket buffer overflows, Oerrs) to make sure that the server statistics are
indicating NFS problems.

Make sure the server is not just overloaded. Use standard performance
evaluation methods and tools such as vmstat and iostat to see if the server is
CPU or I/O bound.

Check for NFS UDP buffer overflows

Execute netstat -p udp . Look in the UDP statistics for the socket buffer
overflows statistic. If it is anything other than zero, you are probably
overrunning the NFS UDP buffer. Be aware, however, that this is the UDP
socket buffer drop count for the entire machine, and it may or may not be
NFS packets that are being dropped. You can confirm that the counts are due
to NFS by correlating between packet drop counts on the client using nfsstat
-cr and socket buffer overruns on the server while executing an NFS write
test.

Check for mbuf problems

See if there are any requests for mbufs that are denied or delayed. If so, you
need to increase the number of mbufs available to the network.

8.1.5 Dropped Packets
Packets can be dropped at the client side, the server side, or somewhere on
the network.

8.1.5.1 Packets Dropped by the Client
Packets are rarely dropped by a client. Since each client RPC call is
self-pacing, that is, each call must get a reply before going on, there is little
opportunity for overrunning system resources. The most stressful operation is
probably reading where there is a potential for 1 MB+/sec of data flowing into
the machine. While the data volume can be high, the actual number of
simultaneous RPC calls is fairly small, and each biod has its own space
allocated for the reply. Thus, it is very unusual for a client to drop packets.
92 RS/6000 SP System Performance Tuning

Packets are more commonly dropped either by the network or by the server.

8.1.5.2 Packets Dropped by the Server
There are two cases where servers will drop packets under heavy loads.

When an NFS server is responding to a very large number of requests, the
server will sometimes overrun the interface driver output queue. This is seen
by looking at the statistics that are reported by the netstat -i command.
Observe the columns marked Oerrs and look for any counts. Each Oerr is a
dropped packet. This is easily tuned by increasing the problem device driver's
transmit queue size. There is little practical drawback for NFS in increasing
the transmit queue size. The idea behind configurable queues is that you do
not want to make the transmit queue too long because of latencies incurred in
processing the queue. But, since NFS maintains the same port and XID for
the call, a second call can be satisfied by the response to the first call's reply.
Additionally, queue handling latencies are far less than UDP retransmit
latencies incurred by NFS if the packet is dropped.

The second common place where a server will drop packets is the UDP
socket buffer. Dropped packets here are counted by the UDP layer and the
statistics can be seen by using the netstat -p udp command. Look under the
statistics marked UDP for the socket buffer overflows statistic.

NFS packets will usually be dropped at the socket buffer only when a server
has a lot of NFS write traffic. The NFS server uses a UDP socket attached to
NFS port 2049, and all incoming data is buffered on that UDP port. The
default size of this buffer is 60000 bytes. We can do some quick math:
Dividing that number by the size of the default NFS write packet (8192), we
find that it will take only eight simultaneous write packets to overflow that
buffer. That could be done by just two NFS clients (with the default
configurations).

So, one of two things has to happen. There has to be high volume or high
burst traffic on the socket. If there is high volume (a mixture of writes plus
other possibly non-write NFS traffic), there may not be enough nfsd daemons
to take the data off the socket fast enough to keep up with the volume. Recall
that it takes a dedicated nfsd to service each NFS call of any type. In the high
burst case, there may be enough nfsd daemons, but the speed at which
packets arrive on the socket is such that they cannot wake up fast enough to
keep it from overflowing.

Each of the two situations is handled differently. In the case of high volume, it
may be sufficient to simply increase the number of nfsd daemons running on
Global File Systems Tuning 93

the system. Since there is no significant penalty for running with more nfsd
daemons on an AIX machine, this should be tried first.

In the case of high burst traffic, the only solution is to make the socket bigger
in the hope that some reasonable size will be sufficiently large enough to give
the nfsd daemons time to catch up with the burst. Memory dedicated to this
socket will not be available for any other use; so, it must be noted that a
tuning objective of total elimination of socket buffer overflows by making the
socket larger may result in this memory being underutilized the vast majority
of the time. A cautious administrator will watch the socket buffer overflow
statistic, correlate it with performance problems, and determine how large to
make the socket buffer.

8.1.5.3 Dropped Packets On the Network
If there are no socket buffer overflows or Oerrs on the server, the client is
getting lots of timeouts and retransmits, and the server is known to be idle;
then, chances are that packets are being dropped on the network. What do
we mean when we say that packets are dropped on the network? We mean a
large variety of things including media and network devices such as routers,
bridges, concentrators, and the whole range of things that can implement a
transport for packets between the client and server.

Any time NFS performance is bad, but a server is not overloaded and is not
dropping packets, you should assume that packets are being dropped on the
network. Much effort can be expended proving this and finding exactly what
on the network is dropping the packets. The easiest way of determining the
problem depends mostly on the physical proximity involved and resources
available.

Sometimes, the server and client are in close enough proximity to be
direct-connected bypassing the larger network segments that may be causing
problems. Obviously, if this is done and the problem goes away, the machines
themselves can be eliminated as the problem. More often, however, it is not
possible to wire up a direct connection, and the problem must be tracked
down in place.

8.1.5.4 NFS Server Statistics
NFS gathers statistics on types of NFS operations performed, along with
error information and performance indicators. The nfsstat command can be
used to identify network problems and give an idea of the type of nfs
operations taking place on your system.The nfsstat command displays this
information categorizing it under the subtitles Server rpc, Server nfs, Client
rpc, and Client nfs.
94 RS/6000 SP System Performance Tuning

The NFS server displays the number of NFS calls received (calls) and
rejected (badcalls) due to authentication, as well as the counts and
percentages for the various kinds of calls made.

The example in Figure 31 on page 95 shows the server part of the nfsstat

command.

Figure 31. Dropped Packets and Server Overruns

PC output for server (-s):

calls This is the total number of RPC calls received from clients.

badcalls This is the total number of calls rejected by the RPC layer.

nullrecv This is the number of times an RPC call was not available when
it was thought to be received.

badlen This indicates packets truncated or damaged; It is the number
of RPC calls with a length shorter than a minimum-sized RPC
call.

xdrcall This is the number of RPC calls whose header could not be
External Data Representation (XDR) decoded.

nfsstat -s
Server rpc:
Connection oriented:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
0 0 0 0 0 0 0
Connectionless:
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
2490 0 0 0 0 0 0

Server nfs:
calls badcalls public_v2 public_v3
2490 0 0 0
Version 2: (0 calls)
null getattr setattr root lookup readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0%
Version 3: (2490 calls)
null getattr setattr lookup access readlink read
0 0% 34 1% 0 0% 1 0% 1 0% 0 0% 2451 98%
write create mkdir symlink mknod remove rmdir
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 0 0% 3 0% 0 0% 0 0%
commit
0 0%
Global File Systems Tuning 95

dupchecks This is the number of RPC calls that did a look-up in the
duplicate request cache.

dupreqs This is the number of duplicate RPC calls found.

It also displays a count of the various kinds of calls and their respective
percentages.

NFS performance can be increased by adding additional nfsd daemons. But
watch the nullrecv column in the nfsstat -s output. If the number starts to
grow, it may mean there are too many nfsd daemons. However, this is usually
not the case on AIX NFS servers as much as it could be the case on other
platforms. The reason for this is that not all nfsd daemons are awakened at
the same time when an NFS request comes into the server. Instead, the first
nfsd wakes up, and, if there is more work to do, this daemon wakes up the
second nfsd and so on.

8.1.5.5 NFS Client Statistics
Of particular interest in diagnosing performance problems is the RPC
statistical data. The fields reporting timeout and retrans are particularly useful
in gross monitoring of performance and evaluation of testing.

For an NFS client, if you see incidents of timeouts and retransmits, and the
numbers are roughly equivalent, you can be assured that there are packets
being dropped. Figure 32 shows the client part of the nfsstat command.
96 RS/6000 SP System Performance Tuning

Figure 32. Dropped Packets Overrun (Client Side)

The severity of the performance degradation resulting from the dropped
packets is dependent upon the number of packets dropped and the time
windows during which they were dropped. It is usually not wise to make
judgments about performance without being able to directly correlate the two,
and this generally requires a repeatable test. For this reason, the most
valuable use of nfsstat is in performance tuning evaluation. The objective
should be to generate as much throughput as possible while avoiding
dropped packets.

RPC output for the client (-c):

calls This is the total number of RPC calls made to NFS.

badcalls This is the total number of calls rejected by the RPC layer.

retrans This is the number of times a call had to be retransmitted due to
a timeout while waiting for a reply from the server. This is
applicable only to RPC over connectionless transports.

nfsstat -c
Client rpc:
Connection oriented:
calls badcalls badxids timeouts newcreds badverfs timers
0 0 0 0 0 0 0
nomem cantconn interrupts
0 0 0
Connectionless:
calls badcalls retrans badxids timeouts newcreds badverfs
4420 0 1 0 1 0 0
timers nomem cantsend
5 0 0
Client nfs:
calls badcalls clgets cltoomany
4398 0 0 0
Version 2: (7 calls)
null getattr setattr root lookup readlink read
0 0% 6 85% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 1 14%
Version 3: (4393 calls)
null getattr setattr lookup access readlink read
0 0% 106 2% 0 0% 18 0% 22 0% 0 0% 4194 95%
write create mkdir symlink mknod remove rmdir
0 0% 1 0% 0 0% 0 0% 0 0% 0 0% 0 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 0 0% 5 0% 46 1% 1 0% 0 0%
commit
0 0%
Global File Systems Tuning 97

badxid This is the number of times a reply from a server was received
that did not correspond to any outstanding call. This means the
server is taking too long to reply.

timeout This is the number of times a call timed out while waiting for a
reply from the server.

newcred This is the number of times authentication information had to be
refreshed.

badverfs This is the number of times a call failed due to a bad verifier in
the response.

timers This is the number of times the calculated timeout value was
greater than or equal to the minimum specified timeout value for
a call.

cantconn This is the number of times a call failed due to a failure to make
a connection to the server.

nomem This is the number of times a call failed due to a failure to
allocate memory.

interrupts This is the number of times a call was interrupted by a signal
before completing.

cantsend This is the number of times a send failed due to a failure to
make a connection to the client.

It also displays a count of the various kinds of calls and their respective
percentages.

For performance monitoring, nfsstat -c will give information on whether the
network is dropping packets. A network may drop a packet if it cannot handle
it. Dropped packets may be the result of the response time of the network
hardware or software or an overloaded CPU on the server. Dropped packets
are not actually lost since a replacement request is issued for them.

The retrans column in the RPC section displays the number of times requests
were retransmitted due to a timeout while waiting for a response. This is
related to dropped packets. If the retrans number consistently exceeds five
percent of the total calls in column one, it indicates a problem with the server
keeping up with demand. Use vmstat, netpmon, and iostat on the server
machine to check the load.

8.1.6 Check for NFS UDP Socket Buffer Overflows
Socket buffer overflows can happen on heavily stressed servers or on servers
that are slow in relation to the clients. One or ten socket buffer overflows is
98 RS/6000 SP System Performance Tuning

probably not a problem. Hundreds are. If this number continually goes up
while you watch it, and NFS is having performance problems, it needs some
kind of fixing.

There are two things that can fix NFS socket buffer overruns. First, try just
increasing the number of nfsd daemons that are being run on the server. If
that does not cure the problem, you must adjust two kernel variables, sb_max
(socket buffer max) and nfs_socketsize (the size of the NFS server socket
buffer). Use the no command to increase sb_max. Its default value is 65536.
Use the nfso command to increase the nfs_socketsize variable. Its default
value is 60000.

sb_max must be set larger than nfs_socketsize. It is hard to suggest new
values. The best values are the smallest ones that also make the netstat

report 0 (or just a few) socket buffer overruns.

You must restart the nfsd daemons after adjusting the sb_max and
nfs_socketsize variables in order for them to take effect. Do stopsrc -s nfsd;
startsrc -s-nfsd. If the nfsd daemons do not start, you have made a mistake in
setting one of the two variables and sb_max is probably not greater than
nfs_socketsize.

Configurations using the no and nfso command must be repeated every time
the machine is booted. Put them in the rc.nfs file right before the nfsd
daemons are started and after the biod daemons are started. The position is
important.

8.1.7 Number of NFS Daemons
This is one of the most often asked questions regarding NFS tuning.
Unfortunately, there is no simple answer.

On the server side, the receipt of any one NFS protocol request from a client
requires the dedicated attention of an nfsd daemon until that request is
satisfied and the results of the request processing are sent back to the client.

On the client side, one biod (block I/O daemon) is required to send any one
read or write request to the server. Biods are only used for reading and
writing files. Other NFS operations, such as name lookup, get file attributes,
and so on, are sent directly to the server from the AIX NFS client kernel
extension.

Careful consideration of the above two paragraphs may help make it clear
why specifying a correct number of nfsd or biod daemons in any given
environment is impossible without a thorough evaluation of the aggregate
Global File Systems Tuning 99

workload. To operate each biod, will tie up exactly one nfsd, but other nfsd
daemons may be utilized by operations that were not originated by a biod.

Here is a summary of the discussed subjects:

• The default number of biod daemons is 6 (threads NFSv3).

• The default number of nfsd daemons is 8 (threads NFSv3).

• Each biod requires an nfsd on the server side.

• On the server, not all nfsd daemons will be attending a biod request.

• When sizing, consider server capabilities and client usage.

Transition Statement - If you have done all you can in increasing nfsd
daemons or decreasing biod daemons and are still getting socket buffer
overflows, you may need to increase the NFS socket buffer. The nfso

command can be used to do this.

8.1.8 The nfso Command
The nfso command can be used to configure NFS attributes. It sets or
displays network options in the currently running kernel. Therefore, the
command must run after each system startup or network configuration.
100 RS/6000 SP System Performance Tuning

Figure 33. The nfso Command

The nfso parameters and their values can be displayed with nfso -a.

Most NFS attributes are runtime attributes that can be changed at any time
with the exception of nfs_socketsize, which needs NFS to be stopped first
and restarted afterwards.

To display or change a specific parameter, use the nfso -o command:

nfso -o portcheck
portcheck= 0
nfso -o portcheck=1

The parameters can be reset to their default values with the -d option:

nfso -d portcheck
nfso -o portcheck
portcheck= 0

Server

Client

Application

NFS Client Extension

write()

VMM

biod
RPC(write block)

JFS NFS AFS DFS

user

kernel

nfsd

nfsd

nfsd

....

biod

write
gather

portcheck= 0
udpchecksum= 1
nfs_socketsize= 60000
nfs_tcp_socketsize= 60000
nfs_setattr_error= 0
nfs_gather_threshold= 4096
nfs_repeat_messages= 0
nfs_udp_duplicate_cache_size= 0

nfs_tcp_duplicate_cache_size= 0
nfs_server_base_priority= 0
nfs_dynamic_retrans= 1
nfs_iopace_pages= 0
nfs_max_connections= 0
nfs_max_threads= 8
nfs_use_reserved_ports= 0
nfs_device_specific_bufs= 1
nfs_server_clread= 1

The nfso command performs no range checking. If used incorrectly, it can
make your system inoperable.

Note
Global File Systems Tuning 101

nfso Command Parameters

portcheck

This checks whether an NFS request originated from a privileged port. The
default value of 0 disables the port checking that is done by the NFS server. A
value of 1 directs the NFS server to do port checking on the incoming NFS
requests.

This is a configuration decision with minimal performance consequences.

udpchecksum

This performs the checksum of NFS UDP packets. The default value of 1
directs the NFS server or client to build UDP checksums for the packets that
it sends to the NFS clients or servers. A value of 0 disables the checksum on
UDP packets from the NFS server or client.

Turning this off is not recommended. Make sure this value is set to 1 in any
network where packet corruption may occur. Slight performance gains can be
realized by turning it off, but this increases the chance of data corruption.

nfs_socketsize

This sets the queue size of the NFS server UDP socket. This socket is used
for receiving the NFS client requests and can be adjusted so that the NFS
server is less likely to drop packets under heavy load. The value of the nfs
socketsize variable must be less than the sb_max option, which can be
manipulated by the no command.

Increase the size of the nfs_socketsize variable when netstat reports packets
dropped due to full socket buffers for UDP and increasing the number of nfsd
daemons has not helped.

nfs_setattr_error

When set to a value of 1, the NFS server ignores invalid setattr requests. This
is provided for certain Personal Computer applications. The default value is
0.

Tuning this parameter should not increase the performance.

nfs_gather_threshold

Determines when to attempt to gather write requests to a file. AIX attempts to
increase throughput to the disks by implementing write gather heuristics on
102 RS/6000 SP System Performance Tuning

the server. The fundamental idea is that if the server sees multiple 8192 write
packets coming in, chances are that this is a sequential file write, and, rather
than sync each 8 KB of data individually, it strives to coalesce these writes
into larger blocks that can be more efficiently handled by the file system and
disk subsystems. Up to six write requests will be gathered and synced
together. When the sync returns, the nfsd daemons are all free to reply to the
client. If the size of the NFS write request is less than the value of the
nfs_gather threshold option, the NFS server writes the data and immediately
responds to the NFS client. If the size of the NFS write request is equal to or
greater than the value of this option, the NFS server writes the data and waits
for a small amount of time before responding to the NFS client.

The write gathering can be a performance advantage for sequential writes but
can produce slight performance decreases for random writes. Look at the
following two scenarios:

1. Delays are observed in responding to RPC requests, particularly those
where the client is exclusively doing nonsequential writes, or the files
being written are written with file locks held on the client.

2. Clients are writing with write sizes smaller than 4096 KB, and write gather
is not working.

If write gather is to be disabled, change the nfs_gather_threshold to a value
greater than the largest possible write. For AIX V4 running NFS Version 2,
that would be 8192. So, changing the value to 8193 disables write gather.
Use this for the situation described above in the first scenario. If write gather
is being bypassed due to a small write size, say 1024 KB (described in the
second scenario), change the write gather parameter to gather smaller
writes. For example, set it to 1024.

nfs_repeat_messages

Checks for duplicate NFS messages. This option is used to avoid displaying
duplicate NFS messages. When set to a value of 1, all NFS messages are
printed to the screen. If set to a value of 0, duplicate messages appearing
one after the other are not printed to the screen. Only the first message of
such a sequence is displayed. When a different message appears, a
message similar to the following will be displayed:

LastNFS message repeated n times

Tuning this parameter does not increase performance.
Global File Systems Tuning 103

nfs_dupIicate_cache_size

The nfso command cannot be used to decrease the
nfs_duplicate_cache_size value. Any attempt will fail; the system has to be
rebooted. The duplicate cache size should be increased for very fast or busy
servers that have a high throughput capability. The duplicate cache is used to
allow the server to correctly respond to NFS client retransmissions. If the
server flushes this cache before the client is able to retransmit, the server
may respond incorrectly, and the client can observe anomalous NFS
behavior. Therefore, if the server can process 1000 operations before a client
retransmits, the duplicate cache size needs to be increased.

Calculate the number of NFS operations that are being received per second
at the NFS server and multiply it by four. This will produce a duplicate cache
size that should be sufficient to allow correct response from the NFS server.
The operations that are affected by the duplicate cache are the following:
setattr, write, create, remove, rename, link, symlink, mkdir, and rmdir.

nfs_server_base_priority

If this value is set, the nfsd processes use it as their base priority. Acceptable
values are from 31 to 126. The default value is 0, which means that the nfsd
processes have a regular floating priority. Therefore, as they increase their
cumulative CPU time, their priority will change. This parameter can be used
to set a static priority for the nfsd daemons. Other values within the
acceptable range will be used to set the priority of the nfsd daemon when an
NFS request is received at the server. This option can be used if the NFS
server is overloading the system (lowering or making the nfsd daemon less
favored). It can also be used if it is desired that the nfsd daemons be one of
the most favored processes on the server. Care must be taken when setting
the parameter because it may render the system almost unusable by other
processes. This can occur if the NFS server is very busy and, essentially,
locks out other processes from having runtime on the server.

nfs_dynamic_retrans

With this parameter set to 1, the NFS client attempts to adjust its timeout
behavior based on past NFS server responses. It allows the NFS client to
automatically decrease the size of NFS read/write packets to attempt to
respond to network or server load problems. This also allows the NFS client
the ability to vary the timeout value used for the retransmission. All of this is
done based on a cumulative history of the NFS server's response time. In
most cases, this parameter does not need to be adjusted. There are some
instances where the straightforward timeout behavior is desired for the NFS
104 RS/6000 SP System Performance Tuning

client. In these cases, the value should be set to 0 before mounting file
systems.

nfs_iopace_pages

This is the maximum number of dirty pages that the NFS client will flush to
the NFS server at one time. This is often useful when, for instance, large
compilations of images are flushed by the binder, and interactive
performance suffers or when an application writes a large file to an
NFS-mounted file system. That file data is written to the NFS server when the
file is closed. In some cases, the resource it takes to write that file to the
server may prevent other NFS file I/O from occurring. The default value for
this parameter limits the number of 4 KB pages written to the server to 32.
The NFS client will schedule 32 pages for writing to the server and then waits
for these to complete before scheduling the next 32. The default value is
usually sufficient for most environments. The value should be decreased if
there are large amounts of contention for NFS client resources. If there is low
contention, the value can be increased.

8.1.9 Mount Options That Affect Performance
The mount command provides some NFS tuning options that are often
ignored or abused because of a lack of understanding of their use.

Before you start adjusting mount options, you have to know what it is you are
trying to achieve with respect to packet delivery and packet turnaround on the
server or network. Most of the NFS-specific mount options will be utilized if
your goal is to decrease the load on the NFS server, or to work around
network problems.

The NFS performance-specific mount options are all specified as a list entry
on the -o option for mount. Options you enter for the -o option on the
command line should be separated only by a comma, not a comma and a
space.

The most useful options are the ones for changing the read and write size
values. Often, the rsize and wsize mount options are decreased in order to
decrease the read/write packet that is sent to the server. There can be two
reasons why you might want to do this.

First, the server may not be capable of handling the data volume and speeds
inherent in transferring the 8 KB read/write packets. This might be the case if
an AIX machine is using a PC as an NFS server. The PC will likely have
limited memory available for buffering large packets. Secondly, if a read/write
size is decreased, there may be a subsequent reduction in the number of IP
Global File Systems Tuning 105

fragments generated by the call. If you are dealing with a faulty network, the
chances of a call/reply pair completing with a two-packet exchange are
greater than if there must be seven packets successfully exchanged.
Likewise, if you are sending NFS packets across multiple networks with
different performance characteristics, the packet fragments may not all arrive
before the timeout value for IP fragments.

On the other hand, if your NFS file system is mounted across a high-speed
network, such as the SP Switch, then larger read and write packet sizes
would enhance NFS file system performance. With NFS Version 3, rsize and
wsize can be set as high as 64 KB. (With NFS Version 2, the largest that rsize
and wsize can be is 8 KB.) This and other NFS Version 3 enhancements are
discussed later in this unit.

8.1.10 Configuring Server Disk Usage
Since the writes at the server must be performed synchronously, writes are
usually disk-bound. In addition, for each write at the server, there has to be a
JFS log file update that must also be done synchronously. This results in two
sequential, synchronous writes if the log logical volume is on the same disk
as the writable file system. Large performance increases can often be
realized by putting the log logical volume on a separate physical volume
(disk) so that the subsystems can increase the parallelism of these two
synchronous operations.

Often it is necessary to achieve parallelism on data access beyond that
described in the above paragraph regarding the log file. Concurrent access to
a single file system on a server by multiple clients or multiple client processes
can result in throughput being bottlenecked on the disk I/O for a particular
device. You can use the iostat command to evaluate disk loading.

For large NFS servers, the general strategy should be to flatten out the disk
I/O demand across as many disk/disk adapter devices as possible. This
results in greater parallelism and the ability to run greater numbers of nfsd
daemons. On a system where disk I/O has been well distributed, it is possible
to reach a point where CPU load becomes the limiting factor on the server's
performance.

8.1.11 Network Locking Performance Implications
Regardless of the client and server performance capacity, all operations
involving NFS file locking will probably seem unreasonably slow. There are
several technical reasons for this, but they are all driven by the fact that, if a
file is being locked, special considerations have to be taken to ensure that the
106 RS/6000 SP System Performance Tuning

file is synchronously handled on both the read and write sides. This means
there can be no caching of any file data at the client. It also means that
caching of file attributes is turned off. All file operations go to a fully
synchronous mode with no caching whatsoever. You might suspect that an
application is doing network file locking if it is operating over NFS and shows
abnormally poor performance compared to other applications on the same
client/server pair.

8.1.12 NFS Version 3 Improvements
NFS Version 3 introduced a variety of improvements to NFS performance and
scalability. These features are covered in detail in the following sections.

Write Throughput

Applications running on client systems may periodically write data to a file,
changing its contents. The amount of time an application waits for its data to
be written to stable storage on the server is a measurement of the write
throughput of a global file system. Write throughput is therefore an important
aspect of performance. All global file systems, including NFS, must ensure
that data is safely written to the destination file while at the same time
minimizing the impact of server latency on write throughput.

The NFS Version 3 protocol offers a better alternative to increasing write
throughput by eliminating the synchronous write requirement while retaining
the benefits of close-to-open semantics. The NFS Version 3 client
significantly reduces the number of write requests it makes to the server by
collecting multiple requests and then writing the collective data through to the
server's cache. Subsequently, it submits a commit request to the server that
causes the server to write all the data to stable storage at one time. This
feature, referred to as safe asynchronous writes, vastly reduces the number
of write requests to the server significantly improving write throughput.

The writes are considered safe because status information on the data is
maintained indicating whether or not it has been stored successfully.
Therefore, if the server crashes before a commit operation, the client will
know by looking at the status indication whether to resubmit a write request
when the server comes back up.

Read Throughput

Read throughput can be defined as the amount of time applications wait for
file data to become available subsequent to issuing a read request. Both NFS
Version 2 and Version 3 clients utilize local disk caching and read-ahead to
enhance read throughput. In addition, NFS clients also maintain the cache
Global File Systems Tuning 107

after a file is closed. This is because in the common case where a file is
reopened, read requests will often be satisfied by data that already resides in
the cache. Together, these features help ensure that the data an application
wants to read will be in the cache in advance of demand reducing waiting
time and thus increasing read throughput.

Reduced Requests for File Attributes

Because read data can sometimes reside in the cache for extended periods
of time in anticipation of demand, clients must check to ensure their cached
data does not become invalid if a change is made to the file by another
application. Therefore, the NFS client periodically acquires the file's
attributes, which include the time the file was last modified. Using the
modification time, a client can determine whether or not its cached data is still
valid.

Keeping attribute requests to a minimum makes the client more efficient and
minimizes server load, thus increasing scalability and performance.
Therefore, NFS Version 3 was designed to return attributes for all operations.
This increases the likelihood that the attributes in the cache are up to date
and thus reduces the number of separate attribute requests. This is an
improvement over NFS Version 2, which does not always return attribute
information.

Efficient Utilization of High Bandwidth Network Technology

NFS Version 2 has an 8 KB maximum buffer size limitation, which restricts
the amount of NFS data that can be transferred over the network at one time.
In NFS Version 3, this limitation has been relaxed enabling NFS to construct
and send larger chunks of data. This allows NFS to more efficiently utilize
high bandwidth network technologies, such as FDDI, 100baseT Ethernet, and
the SP Switch, and has contributed substantially to NFS performance gains.

Reduced Directory "Lookup" Requests

A full directory listing (such as ls -l) requires that name and attribute
information be acquired from the server for all entries in the directory listing.
NFS Version 2 clients query the server separately for the file and directory
names list and attribute information for all directory entries in a lookup
request. However, with NFS Version 3, names list and attribute information is
returned at one time offloading both client and server from performing
multiple tasks.
108 RS/6000 SP System Performance Tuning

8.1.13 How NFS v3 and TCP Work Together
NFS relies upon lower layer transport protocols to transmit data over the
network. NFS was originally designed to use UDP as the transport protocol
for communication over both local- and wide-area networks. UDP was chosen
because, in the past, it provided better performance than TCP. Although UDP
works very well for LANs, it has some limitations when used for
communication over WANs. One drawback is that because it is an unreliable
protocol, UDP is not designed to handle the special problems introduced by
high-latency, low-bandwidth network connections.

Now that there are high-performance TCP implementations available, NFS
has been enhanced to utilize TCP.

Because there is more overhead required to set up an initial connection using
TCP than there is using UDP, all NFS client traffic can be multiplexed over
one TCP connection to the server. In other words, NFS clients use one
connection to each server regardless of the number of client mounts per
server. This keeps overhead to a minimum, uses fewer resources (sockets,
descriptors, and so on), and makes recovery from failure faster. It also allows
servers to scale in order to support larger numbers of NFS clients.

NFS Version 3 works in conjunction with TCP to provide further performance
gains. Unlike NFS Version 2, NFS Version 3 has no fixed limit on the amount
of data that can be transferred between client and server in a single read or
write request. The client and server are able to negotiate whatever transfer
size they can both support. In general, the larger the transfer size, the more
efficient TCP becomes because more data can be sent at one time.

Backward Compatibility with NFS UDP

Considering these benefits, it is easy to see why TCP is expected to become
the preferred transport protocol for NFS, but it will take time for the installed
base of UDP clients and servers to switch over. Therefore, in order to provide
backward compatibility, NFS clients and servers can be implemented so that
they can support both protocols. For example, when an NFS connection is in
the process of being established, the client and server negotiate which
protocol to use based on what each one supports.

8.2 Virtual Shared Disk Tuning

IBM Virtual Shared Disk (VSD) is a subsystem that allows data in logical
volumes on disks physically connected to one node to be transparently
accessed by other nodes. VSD only supports raw logical volumes, not
Global File Systems Tuning 109

journalled file systems. See Figure 34 for an illustration of a simplified virtual
shared disk implementation.

Figure 34. Virtual Shared Disk Implementation

Using the VSD software, applications that are running on different nodes
(belonging to the same partition) can access a raw logical volume as if it were
local at each of the nodes.

When the logical volume is local for a specific node, this node is known as the
server node. The other nodes (the client nodes) can access this same logical
volume because the VSD software routes the I/O requests to the server node
and sends the results back to the client nodes.

The following information is excerpted from VSD tuning information in the
VSD manuals. It serves as a quick reference to tuning and performance of
VSD but does not address everything about configuration or setup
information. If you need more information, please refer to the VSD
documentation.

IP

Node 1
VSD

LVM IP

Node 2
VSD

LVM IP

Node N
VSD

LVM

...

IP Network

LV VG
110 RS/6000 SP System Performance Tuning

8.2.1 Tunable Parameters Related to VSD
The main VSD tunable areas are:

• Logical Volume Manager (striping and other characteristics)
• IP communications adapter (usually the switch)
• Virtual Shared Disk cache buffer
• Buddy buffer
• Maximum I/O request size
• Request blocks
• pbufs
• mbufs

The actual processing capability required for Virtual Shared Disk service is a
function of the application I/O access patterns, the node model, the type of
disk, and the disk connection.

If you plan to run time-critical applications on a Virtual Shared Disk server,
remember that servicing disk requests from other nodes might conflict with
the demands of these applications.

Make sure that you have sufficient resources to run the Virtual Shared Disk
program efficiently. This includes enough buddy buffers of sufficient size to
match your file system block size, as well as sufficient rpoolsize and
spoolsize blocks in the communications subsystem.

8.2.2 Logical Volume Manager Tuning Considerations
There is always an associated logical volume for every virtual shared disk
defined and configured in a system. Every virtual shared disk I/O request
eventually becomes an I/O request to the associated logical volume (unless
you get a cache hit at the sever). This mapping of virtual shared disk I/O
requests to the associated logical volume I/O request is handled
transparently by the VSD subsystem. All the performance tuning
considerations that apply to a logical volume also apply to its virtual shared
disk.

8.2.3 SP Switch Considerations
For virtual shared, set the maximum IP message size (utilized by the virtual
shared disk driver) to 61440 (60 KB). Ensure that the maximum buddy buffer
size is 256 KB, since the value you assign to maximum buddy_buffer_size in
the SDR also limits the maximum size of the request that the IBM Virtual
Shared Disk subsystem sends across the switch. For example, if you have:
Global File Systems Tuning 111

• A request from a client to write 256 KB of data to a remote virtual shared
disk

• A maximum buddy buffer size of 64 KB

OR

• A maximum IP message size of 60 KB

the following transmission sequence occurs:

1. The IBM Virtual Shared Disk subsystem divides the 256 KB of data into
four 64 KB requests in four buddy buffers.

2. Each 64 KB block of data becomes one 60 KB packet and one 4 KB
packet for transmission to the server through IP.

3. At the server, the eight packets are reassembled into four 64 KB blocks of
data each in a 64 KB buddy buffer

4. The server then has to perform four 64 KB write operations to disk and
return four acknowledgments to the client.

A better scenario for the same write operation would use the maximum buddy
buffer size of 256 KB:

• The same 256 KB client request to the remote virtual shared disk

• The maximum buddy buffer size of 256 KB

• The maximum IP message size of 60 KB

This produces the following transmission sequence:

1. The 256 KB request becomes four 60 KB packets and one 16 KB packet
for transmission to the server via IP.

2. At the server, the five packets are reassembled into one 256 KB block of
data in a single buddy buffer.

3. The server then performs one 256 KB write operation and returns an
acknowledgment to the client.

The second scenario is preferable to the first because the I/O operations at
the server are minimized. A perfect scenario would be one where the IBM
Virtual Shared Disk component does not use buddy buffers at all - when the
client request is less than or equal to the maximum IP message size. For
example:

• A request from a client to write 60 KB of data to a remote virtual shared
disk server
112 RS/6000 SP System Performance Tuning

• A maximum IP message size of 60 KB

When you use the switch, send pool clusters are used instead of buddy
buffers as long as the request size is less than ip_message_size, as in the
example just cited. Buddy buffers are used only when a shortage in the
switch buffer pool occurs or when the size of the request is greater than
ip_message_size. If you see buddy buffer shortages, instead of increasing
your buddy buffers, you need to increase your switch send pool size.

8.2.3.1 mbufs and the Switch Pool
mbufs are used for data transfer between the client and the server nodes by
the IBM Virtual Shared Disk subsystem's own UDP-like Internet protocol. If
you are using the switch (css0) as your communications adapter, the IBM
Virtual Shared Disk component uses mbuf clusters to do I/O directly from the
switch's send and receive pools.

If you notice that the indirect I/O statistic (from the IBM Virtual Shared Disk
Perspectives Statistics notebook page or from the output of the vsdstat

command) is incremented consistently, run errpt to check the error log. If you
see the line:

IFIOCTL_MGET(): send pool shortage

you should consider increasing the size of the send and receive pools.

To check the current sizes of the send and receive pools, type:

lsattr -l css0 -E

The default size for each pool is 524288 bytes (512 KB).

To change the sizes of the pools to 4 MB, type:

/usr/1pp/ssp/css/chgcss -l css0 -a spoolsize=4194304
/usr/1pp/ssp/css/chgcss -l css0 -a rpoolsize=4194304

These commands increase the send and receive pool size to 4 MB.

Note that you must reboot the node for the new sizes to take effect.

IBM suggests you allow 16 MB for mbufs and clusters. You can set this value
by issuing:

no -o thewall=16384

To see what your current system mbuf setting is, type:

no -a | grep thewall
Global File Systems Tuning 113

System performance considerations regarding mbufs and mbuf clusters also
apply to virtual shared disk environments.

8.2.4 Buddy Buffers
The Virtual Shared Disk server node uses buddy buffers to temporarily store
data for I/O operations originating at a client node to handle requests that are
greater than ip_message_size. In contrast to the data in the cache buffer, the
data in a buddy buffer is purged immediately after the I/O operation
completes.

The values associated with the buddy buffer are:

• Minimum buddy buffer size allocated to a single request

• Maximum buddy buffer size allocated to a single request

• Total size of the buddy buffer

Buddy buffer space is allocated in powers of two. If an I/O request size is not
a power of two, the smallest power of two that is larger than the request is
allocated. For example, for a request size of 24 KB, 32 KB is allocated on the
server.

If you are using the switch as your adapter for virtual shared disk, we
recommend settings 4096 (4 KB) and 262144 (256 KB), respectively, for
minimum and maximum buddy buffer size allocated to a single request.

To define the total size of the buddy buffer, consider the remote I/O
throughput for the server, and specify the number of maximum-sized buddy
buffers in the buffer. For example, if you expect the server to serve 10 MB per
second on behalf of remote clients, and a request spends an average of 60
milliseconds on the server, multiply 10 MBps by 0.06 seconds and, for safety,
double or triple the result for a total buddy buffer size of 1.8 MB (eight 256 KB
maximum buddy buffers).

If the virtual shared disk statistics consistently show queued

Buddy buffers are used only when a shortage in the switch buffer pool
occurs or on certain networks (for example, the Ethernet).

Note
114 RS/6000 SP System Performance Tuning

requests waiting for buddy buffers, do not add more buddy buffers. Instead,
increase the size of the switch pool or spread the data over disks attached to
other nodes to prevent the bottleneck.

8.2.5 VSD Buffer Allocation
Your application should put all newly allocated buffers on a page boundary. If
your I/O buffer is not aligned on a page boundary, the VSD device driver will
not parallelize I/O requests to underlying virtual shared disks, and
performance will be degraded.

8.2.6 The Cache Buffer
Each VSD device driver, that is, each node, has a single cache buffer shared
by cacheable virtual shared disks configured on and served by the node. The
cache buffer is used to store the most recently accessed data from the
cached virtual shared disks (associated logical volumes) on the server node.
The objective is to minimize physical disk I/O activity. If the requested data is
found in the cache, it is read from the cache rather than the corresponding
logical volume.

Data in the cache is stored in 4 KB blocks. The content of the cache is a
replica of the corresponding data blocks on the physical disks. Write-through
cache semantics apply; that is, the write operation is not complete until the
data is on the disk.

When you create virtual shared disks with VSD perspectives or the createvsd

command, specify the cache option or the nocache option. IBM suggests that
you specify nocache (or make the cache buffer small) in most instances
(especially in the case of read-only or other than 4 KB applications) for the
following reasons:

• Requests that are not exactly 4 KB and not aligned on a 4 KB boundary
will bypass the cache buffer but will incur the overhead of searching the
cache blocks for overlapping pages.

• Every 4 KB I/O operation incurs the overhead of copying into or out of the
cache buffer as well as the overhead of moving program data from the
processor cache due to the copy.

If your application uses the fastpath option of asynchronous I/O, the
maximum buddy buffer size must be greater than or equal to 128 KB.
Otherwise, you will get EMSGSIZE Message too long errors.

Note
Global File Systems Tuning 115

• There is overhead for maintaining an index on the blocks cached.

If you are running an application that involves heavy writing followed
immediately by reading, it might be advantageous to turn the cache buffer on
for some virtual shared disks on a particular node. Choose the appropriate
size of the cache based on the expected throughput and the expected time
lag between writes and reads. For example, if the expected throughput is 100
4 KB-aligned I/O operations per second and reads lag writes by 0.5 seconds,
calculate the cache buffer size by multiplying 100 x 0.5 and, as a safety
factor, double this for a total of 100 cache blocks.

The lsvsd -s command gives detailed statistics on virtual shared disk cache
hits and I/O activities. This tells you which virtual shared disks are heavily
used. See “VSD Statistics” on page 118 for information on how to interpret
VSD statistics.

8.2.7 Maximum I/O Request Size
The following factors limit the block size that the virtual shared disk (VSD)
subsystem uses to process each request:

• The largest block size the VSD subsystem uses is the smaller of
max_buddy_buffer_size or 256 KB.

• If the VSD uses the switch as its adapter, the maximum max_IP_msg_size
that can be sent is 65024 bytes (63.5 KB). IBM suggests the value 61440
(60 KB) for the VSD device driver when css0 is defined as the VSD
adapter in the SDR. The ctlvsd -M command can override the default.
max_IP_msg_size should be set to a value that is a multiple of 512 bytes
and is less than or equal to 63.5 KB (when the switch is used) and less
than or equal to 24 KB (when the switch is not used). The statvsd

command displays the current value.

• Setting max_IP_msg_size to more than 24 KB when using communication
adapters with small MTU can overflow the adapter driver’s internal buffer
causing the IP layer to drop packets. This forces the virtual shared disk
device driver to retry (sometimes without success) resulting in a timeout.

Every virtual shared disk I/O request is subject to both limits. For example,
with max_buddy_buffer_size of 262144 (256 KB) and max_IP_msg_size of
61440 (60 KB), if an application requests a single 64 KB read to a virtual
shared disk served by the local node, the request is passed down to the local
logical volume as one 60 KB request and one 4 KB request.

The atomicity of an I/O operation is gated by the size of the virtual shared
disk request, rather than the size of the application request. If the virtual
116 RS/6000 SP System Performance Tuning

shared disk request is smaller than the application request, the application
request will be split down to the size of the virtual shared disk request.

8.2.8 Request Blocks
The number of request blocks is the total number of physical I/O operations
that have been issued by all processes on a node but have not completed.
The number includes requests to both local and remote devices. Because
large requests may be broken up into smaller subrequests, the request block
number may be several times bigger than the actual number of pending
read/write requests.

For example, if I/O requests are:

• Issued at a rate of 1000 I/O operations per second

• Broken on the average into three pieces

• Responded to in 50 milliseconds

the algorithm for calculating the number of request blocks is 1000 X 3 X 0.05
for a total of 150 request blocks. You may want to increase the number
somewhat as a safety precaution to account for the possibility of workload
surges. Specifying an inordinately large number of request blocks can have a
negative performance impact. However, a large number of request blocks can
flood the network causing servers to run out of mbufs and causing
unnecessary retransmissions. What constitutes a large number of requests
depends on how large the request size is and how many nodes are in the
system.

Although the statvsd command reports the number of times there is no
request block available, queueing for request blocks does not necessarily
imply a performance bottleneck. If you increased the number of request
blocks infinitely, queuing would occur elsewhere in the operating system.

The number of request blocks can be set and changed with the VSD
perspectives graphical interface or by using the vsdnode and updatevsdnode

commands, respectively.

8.2.9 Virtual Shared Disk pbufs
Buffers called pbufs are used for actual physical I/O requests that are
submitted to the disks. A pbuf shortage affects overall performance
negatively. However, you must also be careful not to exceed your
environment’s limitations.
Global File Systems Tuning 117

pbufs are specified as a way of controlling the number of pending device
requests for a specific virtual shared disk on its server node. pbufs are
specified on a per-device basis.

You can set the number of pbufs to be allocated per virtual shared disk by the
Designate as an IBM VSD node... action, the rw_request_count parameter of
the vsdnode command, or the SMIT vsdnode_dialog fast path.

Each virtual shared disk, regardless of its activity and whether the node is a
client or a server, is allocated these pbufs. Each pbuf is 128 bytes long. You
can calculate how much of the kernel heap you need for pbufs using the
following formula:

heap_allocated = nvsd x nreq x 128

where:

nvsd is the number of virtual shared disks

nreq is the number of pbufs you are requesting

Make sure that heap_allocated never exceeds the available kernel heap. For
example, given that one eighth of the heap is available for pbufs (about
32,000,000 bytes), and 1300 virtual shared disks are configured, the value of
nreq cannot exceed 192.

To check on the interactions among request blocks, pbufs, and cache blocks
using the VSD perspectives graphical user interface, do the following:

• With a node selected, click Action -> View and Modify Properties...

• Select the VSD Node Statistics page.

• View the statistics and decide which parameters to tune.

The statvsd command also gives detailed statistics on request shortages,
pbuf shortages, and cache block shortages. You can run the command
together with lsvsd -s before and after an application execution to determine
how to tune these parameters to best fit a particular workload.

8.2.10 VSD Statistics
To list VSD usage statistics, you can use either the perspective’s graphical
user interface or the statvsd command.
118 RS/6000 SP System Performance Tuning

Figure 35. statvsd Command Output

Issue the ctlvsd -V command to reset the statistics.

Issue the statvsd command to show the statistics.

The statistics provide information about the number of logical read and write
operations, the number of remote logical read and write operations, the
number of client logical read and write operations, the number of physical
reads and writes, the number of cache hits for read, and the number of
512-byte blocks read and written.

The number of blocks read and written is cumulative; so, issue the ctlvsd -V

command to reset this count before measuring it. The local logical operations
are requests that were made by a process executing at the local node,
whereas the remote logical operations were made by a process executing on
a remote node. Client operations are those local logical requests that cannot
be satisfied locally and have to be sent to a remote node. Physical operations
are those server operations that must be passed to the underlying disk
device. Cache read hits are those server reads that do not require a device

(1*)
(2*)
(3*)
(4*)
(5*)

ipcksum_cntr: 0 good, 0 bad, 0 % bad.
VSD driver (vsdd): IP/SMP interface: PSSP Ver:2 Rel: 5

9 vsd parallelism
61440 vsd max IP message size

0 requests queued waiting for a request block
0 requests queued waiting for a pbuf
0 requests queued waiting for a cache block
0 requests queued waiting for a buddy buffer

0.0 average buddy buffer wait_queue size
0 rejected requests
0 rejected responses
0 rejected no buddy buffer
0 rejected merge timeout.
0 requests rework
0 indirect I/O
0 64byte unaligned reads.
0 comm. buf pool shortage
0 timeouts

retries: 1 0 0 0 0 0 0 0 0
1 total retries

Non-zero Sequence numbers
node# expected outgoing outcast? Incarnation: 0

13 0 60685
15 0 183448

2 Nodes Up with zero sequence numbers: 7 8
Global File Systems Tuning 119

read because the read operation was satisfied from the IBM Virtual Shared
Disk cache.

These statistics show requests queued waiting for buddy buffers. If we are
using the switch adapter, we do not have to add more buddy buffers, but we
have to increase the switch send pool or spread the data over disks of other
nodes.

If using the switch, the VSD uses pool segments for I/O directly from the
switch's send and receive pools.

The output shown in the figure provides statistics. The ones in the first
highlighted area are useful to set the parameters properly in the SMIT panel
that is shown later in these student notes.

The following are the main fields to check:

• VSD parallelism (default value is 9 and should always be used) indicates
how VSD divides the I/O requests into smaller units.

• max_IP_message is the value set in the last field of the SMIT panel. The
value is set to 61440 (60k) because, in the example defined on the test
machine, VSD was using the switch (see the second field in the SMIT
panel). In fact, 61440 is the value that must be defined when using the
switch while the default value is 24576 (24k).

• In the SMIT panel the VSD Request Count is set to 256, which is the
recommended number of outstanding VSD requests. This number should
be changed if the statistics show that some requests are queued waiting
for a block.

• If the number of requests waiting for a pbuf is not 0, change the
Read/Write Request Count field, which specifies the maximum number of
outstanding requests the VSD device driver allows for each underlying
logical volume.

• The VSD device driver implements an optional write-through cache with a
block size of 4 KB. The recommended values are the ones displayed in
the SMIT panel (the minimum is a 256 KB = 64 x 4 KB cache, and the
maximum is 1 MB = 256 x 4 KB), but, if we have not defined the maximum
as 256 and see that there are requests waiting for cache blocks, we can
tune this value.

• We must consider the number of max-sized buddy buffers and their
maximum size. These two fields must be checked if we get a number that
is not zero for the requests waiting for a buddy buffer. The recommended
value, when the switch is used as an IP adapter, is no more than 4, which
120 RS/6000 SP System Performance Tuning

means 1024 KB buddy buffer size in combination with the recommended
maximum size of 256 KB.

To change the characteristics of the VSD analyzed by the statistics, we can
use the notebook page of spvsd GUI (perspectives) or SMIT.

8.2.11 Tuning Virtual Shared Disk Performance
The IBM Virtual Shared Disk device driver passes all its requests to the
underlying Logical Volume Manager subsystem. Before you tune the virtual
shared disk, check that the I/O subsystem is not the bottleneck. If an
overloaded I/O subsystem is degrading your system's performance, tuning
the virtual shared disk will not help. In the case of I/O subsystem overload,
consider spreading the I/O load over more disks or nodes.

For best performance, do the following:

1. Use the defaults when defining virtual shared disks.

2. Turn IBM VSD caching off if you are not using your system for online
transaction processing.

3. Do a performance run to collect statistics on the virtual shared disks, your
I/O subsystem, and the CPU on all nodes (or use Performance Monitor to
collect information during normal system operation). Issue statvsd several
times during the performance run, and compare the values for the various
statistics. Use iostat to check your disk utilization. If you notice increasing
numbers of queued requests, do the following:

• If the system is I/O bound (meaning your disks are more than 50
percent utilized), add disks.

• If the system is CPU bound, add nodes or spread the workload on the
virtual shared disk server nodes. You can use the Hashed Shared Disk
data striping subsystem to spread the workload.

• If nodes are doing excessive swapping due to insufficient pinned
memory, which is used by pbufs, buddy buffers, cache, and the switch
pool, reduce cache size.

• If requests are queuing because of a shortage of buddy buffers or
pbufs, you might have disk bottlenecks. Spread the data or add disks to
the server nodes.

• If your application issues requests that are larger than 64 KB, set your
maximum buddy buffer size to 256 KB.
Global File Systems Tuning 121

• If you see too many retries, check for disk bottlenecks. If that is not the
problem, consider increasing the switch pool size (see “mbufs and the
Switch Pool” on page 113).

4. Reset the statistics counter by running the ctlvsd command (you can use
the Run Command... action of the IBM Virtual Shared Disk Perspective
graphical user interface).

5. Do another performance run.

You should generally operate with IBM Virtual Shared Disk caching off.
Memory is better allocated to the operating system itself, for paging, and to
the cache belonging to the application using the virtual shared disk. To turn
IBM Virtual Shared Disk caching off, do the following:

1. Shut down applications that use virtual shared disks.

2. If you do not use the IBM Recoverable Virtual Shared Disk subsystem,
unconfigure the virtual shared disks.

3. Select one or more nodes.

4. Use the Run Command... action and run the updatevsdtab command to
change the cache/nocache option to nocache.

5. If you do not use the IBM Recoverable Virtual Shared Disk subsystem,
configure the virtual shared disks.

6. If you do use the IBM Recoverable Virtual Shared Disk subsystem, refresh
the virtual shared disk configuration.

7. Restart your applications.

If you use caching, remember that the IBM Virtual Shared Disk component
only caches 4 KB requests aligned on 4 KB boundaries.

8.2.12 Virtual Shared Disk Tuning Recommendations
Here are some rules of thumb (especially for GPFS) for tuning the VSD
subsystem:

• Use a switch send and receive pool size of 16 MB on VSD servers.

• If your application uses the fastpath option of asynchronous I/O, the
maximum buddy buffer size must be greater than or equal to 128 KB,
otherwise you will get EMSGSIZE Message too long errors.

• Set the buddy buffer count to at least two times the number of disks on
VSD servers.

• Set the buddy buffer count on clients to 1.
122 RS/6000 SP System Performance Tuning

• Set the buddy buffer size to 256KB.

• Set max_IP_msg_size to 61440 to maximize the switch packet size.

8.3 General Parallel File System Tuning

The following General Parallel File System Performance Tuning information
is an excerpt from the GPFS documentation. It only addresses performance
and tuning of GPFS. For more general GPFS information, consult the full
GPFS documentation.

IBM General Parallel File System for AIX (GPFS) provides file system
services to parallel and serial applications running on the RS/6000 SP. GPFS
allows users shared access to files that may span multiple disk drives on
multiple SP nodes. For an overview, see Figure 36 on page 123.

Figure 36. GPFS Overview

GPFS allows parallel applications simultaneous access to the same files or
different files from any node in the configuration while managing a high level
of control over all file system operations. It offers extremely high
recoverability while maximizing data accessibility.

Node 1 Node 2 Node 3

Node 4

Application

GPFS

RVSD/VSD

CSS Switch

Dev. Driver

LVM

RVSD/VSD

CSS Switch

Application

GPFS

RVSD/VSD

CSS Switch

Application

GPFS

RVSD/VSD

CSS Switch

Node 5

Dev. Driver

LVM

RVSD/VSD

CSS Switch

SP Switch
Global File Systems Tuning 123

Using GPFS to store and retrieve your files can improve system performance
by:

• Allowing multiple processes or applications on all nodes of the SP system
simultaneous access to the same file using standard file system calls.

• Increasing aggregate bandwidth of your file system by spreading reads
and writes across multiple disks.

• Balancing the load evenly across all disks to maximize their combined
throughput. One disk is no more active than another.

• Supporting large amounts of data allowing you to have bigger file systems.

• Allowing concurrent reads and concurrent writes to files in the file system
(this is very important for parallel processing).

GPFS builds on the shared disk concept at the heart of the Virtual Shared
Disk component of the Parallel System Support Programs for AIX by taking
advantage of the speed of the SP Switch and using it to accelerate parallel
file operations that would overload serial file system management.

8.3.1 Planning for GPFS
Although you can modify your GPFS configuration after it has been set, a
little consideration before installation and initial setup will reward you with a
more efficient and immediately useful file system.

GPFS configuration requires you to specify several operational parameters
that reflect your hardware resources and operating environment. Later, during
file system creation, you have the opportunity to specify additional
parameters based on the expected size of the files. These parameters define
the disks for the file system and how data will be written to them.

8.3.2 Configuration Considerations
Configuration involves defining the nodes to be included in the GPFS
subsystem and specifying how they operate. You can provide a list of nodes
as input to configuration or allow GPFS to configure all the nodes in your SP
system. You also have the option of installing a sample configuration file with
preset values that you can accept as defaults or modify to suit your needs, or
you can create and install a configuration file of your own.

8.3.3 Estimating Node Count
When creating a GPFS file system, overestimate the number of nodes that
will mount the file system. This input is used in the creation of GPFS data
structures that are essential for achieving the maximum degree of parallelism
124 RS/6000 SP System Performance Tuning

in file system operations. Although a larger estimate consumes a bit more
memory, insufficient allocation of these data structures can limit node ability
to process certain parallel requests efficiently, such as the allotment of disk
space to a file. If you cannot anticipate the number of nodes, allow the default
value of 32 to be applied. Specify a larger number if you expect to add nodes.
During configuration, you can specify two parameters that control how much
cache is dedicated to GPFS. These values can be changed later; so,
experiment with larger values to find the optimum cache size that improves
GPFS performance without affecting other applications. In order for changed
values to take effect, you must restart GPFS.

pagepool This is the size of the cache on each node. It can range
from a minimum of 4 MB to a maximum of 512 MB per
node. This value must be specified with the character M,
for example, 80M. The default is 20M.

mallocsize This area is used exclusively for GPFS control
structures. It can range from a minimum of 2 MB to a
maximum of 128 MB per node. This value must be
specified with the character M, for example, 8M.The
default is 4M.

maxFilesToCache This is the number of i-nodes to cache for recently used
files that have been closed. Storing a file's i-node in
cache permits faster re-access to the file. The default is
200, but increasing this number may improve throughput
for workloads with high file reuse. Increasing it where
file reuse is not great wastes kernel heap storage. Do
not increase this parameter if you are in doubt.

Each cached file requires space in the mallocpool for an
i-node plus approximately 800 bytes of metadata. GPFS
will not use more than 50 percent of the mallocpool for
this purpose. If you increase maxFilesToCache, you
should also increase the mallocsize parameter to a
value equal to 2 x (maximum i-node size for the file
system + 800) x maxFilesToCache. For example, to set
maxFilesToCache to 1000 for a file system with a
maximum i-node size of 4096, mallocsize should be
approximately 10 MB.

The sum of these two parameters must not exceed 80 percent of real
memory.

Note
Global File Systems Tuning 125

The only configuration parameter that directly addresses performance is
priority. Sometimes called scheduling priority, this parameter sets the UNIX
priority for the GPFS daemon. The default is 40. Priority increases with lower
values.

8.3.4 GPFS Use of Virtual Shared Disks
GPFS accesses data using the facilities of the Recoverable Virtual Shared
Disk (RVSD) Licensed Program and the Virtual Shared Disk (VSD)
component of the Parallel System Support Programs for AIX, which allows
application programs executing on different SP nodes to access a logical
volume as if it were local at each node. RVSD, which allows a secondary or
backup server to be defined for such a logical volume, is required even when
there are no twin-tailed disks that can be physically accessed from more than
one node because it provides fencing capabilities that preserve data integrity
in the event of certain failures. Managing Shared Disks, SC23-4839 contains
installation, management, and usage information for both VSD and RVSD.

Proper planning for GPFS installation provides:

• Sufficient processing capability for VSD servers to deliver data to clients

• Sufficient disks to meet the expected I/O load

• Sufficient connectivity (adapters and buses) between disks and VSD
servers

8.3.5 Switch Tuning for GPFS
Use the dsh command to propagate the following rpoolsize and spoolsize
values to all nodes:

dsh /usr/lpp/ssp/css/chgcss -l css0 -a rpoolsize=16777216 -a \

spoolsize=16777216

Ignore any message of the type ...poolsize != default.

Do not set the rpoolsize and spoolsize values on the Control Workstation,
since it does not have a switch adapter card.

Note
126 RS/6000 SP System Performance Tuning

You can use SMIT or the mmchconfig command to change the following
configuration attributes after the initial configuration has been set:

• pagepool

• mallocsize

• priority

• autoload

• client_ports

• server_port_number

• server_kprocs

Items 1 through 3 take effect the next time GPFS is started. Items 4 through 7
require that the nodes be rebooted before new values take effect.

You must provide a descriptor for each GPFS IBM VSD to be created or
passed to the GPFS file system. Each descriptor contains the following
positional parameters for its IBM VSD.

8.3.6 GPFS Performance Tuning
GPFS performance depends on the correct specification of its parameters as
well as the correct tuning of the functions it uses. The following information
describes the parameters that affect performance. For most workloads, the
parameters that have the greatest impact on performance are the file system
block size and the amount of memory allocated to GPFS. There are other
parameters that affect specific workloads.

File System Block Size
GPFS offers three block sizes for file systems: 16 KB, 64 KB, and 256 KB.
Once you have set this parameter at file system creation, you cannot change
it without recreating the file system. The 256 KB block size is the best choice
for file systems that contain large files accessed in large reads and writes.
This block size allows the most effective I/O operations. The 16 KB block size
optimizes use of disk storage at the expense of large data transfers and
should be used for other types of applications. The 64 KB block size offers a
compromise. It makes more efficient use of disk space than 256 KB while
allowing faster I/O operations than 16 KB. You should choose the block size
based on the application set that you plan to support.
Global File Systems Tuning 127

8.3.7 Additional GPFS Considerations
There are several other parameters that are set during GPFS configuration.
In most environments, the default values result in efficient performance.
Some environments, however, can benefit from adjustment.

Priority
Much of the GPFS code runs as a multithreaded daemon. By default, the
priority of the daemon is 4. You may wish to increase the priority of the
daemon if your users execute a large number of time-critical I/O operations.

Token Management
The token management parameters control simultaneous file access. Do not
change these settings unless you are familiar with AIX kernel and thread
concepts.

The number of client ports and server processes controls the number of token
operations that can be performed concurrently. The default settings should be
adequate for workloads that are not very demanding on locks. If your
applications are doing large amounts of very fine-grained write sharing of
files, you might consider increasing these values.

client_ports
This is the number of communication ports that are reserved for
requesting file access tokens.

server_kprocs
This is the number of kernel processes that are dedicated to processing
file access token requests. These processes await token requests, and
their number determines how efficiently multiple parallel processes can
access a single file.

server_port_number
Two consecutive UDP ports are defined starting at this port number. The
token manager receives token requests through these ports. The value of
this parameter must be the same for all nodes in the GPFS configuration.

The number of these processes begins with the value specified as
server_port_number and continues for the value specified as
server_kprocs. server_port_number must be the same for all nodes in the
GPFS configuration.

8.3.8 GPFS Performance and Scaling
This section describes some performance figures that prove how scalable
GPFS is. The performance measurements were mainly done to find upper
128 RS/6000 SP System Performance Tuning

and lower bounds for aggregate bandwidth of GPFS. The results are based
on GPFS Release 1.1, RVSD Release 2.1.1 and PSSP 2.4.

It should be mentioned that the test program is not representative of most
real workloads in that it does nothing but I/O; there is virtually no processing
time between read and write requests. Few applications will show such
behavior except, possibly, for short periods. For this reason, it is likely that
GPFS can support more clients than were tested.

The tests were run with 256 KB block size. The rpool and spool for the switch
were 16 MB. As you can see in Figure 37, there is nearly a linear increase in
throughput when the number of servers is increased. For example, with eight
clients utilizing one server, we got an average read throughput of 56.6 MBps.
When increasing the number of servers to four, we got an average throughput
of 215.2 MBps.

Figure 37. GPFS Performance and Scaling on a 332 Mhz SMP Node

1
2

4
8

16
32

Number of Clients

0

50

100

150

200

250

T
hr

ou
gh

pu
tM

B
/s

Read 64K

Write 64K

One Server 256K Block size

1 2 4 8 16 32

Number of Clients

0

50

100

150

200

250

T
hr

ou
gh

pu
tM

B
/s

Read 64K

Write 64K

Four Server 256K Block size
Global File Systems Tuning 129

Table 12 gives a more detailed overview of the same test results.

Table 12. GPFS Performance Test with 64 KB Read Requests

8.3.9 Applications and Performance
The pattern of I/O generated by the application set is a major factor in the
determination of GPFS performance. The following I/O patterns can be
described:

Applications that do sequential reads or writes in increments of the file
system block will see the highest throughput, and the use of larger file system
blocks will maximize this. The limiting factor in these cases is either the
number of disks that are available or the adapters and buses that attach the
disks. The file system aids the performance in this case by doing read-ahead
of blocks that will be used soon and by overlapping the actual write of data to
a disk with the progress of your application.

Applications that do sequential writes using smaller blocks that create a new
file or extend an existing one should see throughput that is only slightly worse
than full block writes. The additional system calls to deliver the same amount
of data will consume more CPU and that processing is the only difference.
The actual disk I/O is overlapped with continued application processing as
was the case for full block writes.

Applications that do sequential reads smaller than a block size will have disk
characteristics similar to full block I/O because the file system does the same
read ahead. Throughput in this case will be somewhat slower than full block
size operations because of the additional CPU required when less data is
transferred per call.

Applications that do small sequential writes that overlay data in existing files
will cause additional I/Os because the file system must merge the changed

Clients 1 Server (MBps) 2 Servers
(MBps)

4 Servers
(MBps)

8 Servers
(MBps)

1 51.2 55.3 50.2 52.7

2 53.7 98.5 96.5 109.7

4 54.1 107.6 193.6 208.9

8 59.0 117.1 215.2 367.1

16 N/A N/A 215.5 365.1

32 N/A N/A 215.3 362.7
130 RS/6000 SP System Performance Tuning

portion of the block into the existing portion of the block. This causes the first
write into a block to fetch the existing block from disk. Subsequent writes to
the same block from the same node use the same copy unless there is an
intervening write from another node. GPFS will write the block when all data
is written and overlap it with further application processing.

Applications that do random reads of files are gated by the speed of a single
disk. In this case, the file system cannot prefetch the data and must do disk
reads synchronously with the application read call. Applications that do
random writes of full blocks should see performance similar to sequential
writes if sufficient page pool space is allocated. Applications that do random
writes of odd sizes experience the time required to fetch the relevant sectors
from disk and modify the contents. This slows these operations to the speed
of a single disk.

Parallel applications that read the same file read at the speed of the disk
subsystem for each instance of the application. Disk subsystems that do
caching in the disk head or in the path to the disk provide significant benefit to
this class of application.

Parallel applications that write to the same file should attempt to write large
contiguous regions of the file from individual instances of the application
rather than writing small elements interleaved with elements from other
instances of the application. The larger regions assigned to each node allow
a coarser more efficient lock operation and more efficient use of the disks. A
node that is processing a contiguous I00 MB set of writes can obtain a set of
tokens covering the region and hold it without interference. The disk sectors
that back up that region are also void of interference from other nodes. A
node that is processing 100-byte interleaved writes must obtain tokens for the
disk area containing the data and give up those tokens when a write occurs
within the same data block. As part of processing these writes, the entire disk
sector must be read and written back as part of token relinquish. Parallel
applications should be designed to write the largest contiguous region that is
consistent with the needs of the application from a single node.
Global File Systems Tuning 131

132 RS/6000 SP System Performance Tuning

Chapter 9. Common SP Performance Problems

When tuning an SP system, several other problems can cause
lower-than-expected performance. The following sections shed more light on
these problems, how to detect them, and what tuning parameters to change
in order to alleviate them.

9.1 The Nagle Algorithm

A problem that often occurs on the SP system is that an application runs very
slowly when using the SP Switch, while performance is significantly better on
an Ethernet or FDDI network interface. This problem is sometimes caused by
the Nagle Algorithm (used by TCP/IP) interacting with the delayed ACK
(acknowledgment) timer.

Following are the specific rules used by the Nagle Algorithm for deciding
when to send data:

• If a packet is equal to or larger than the segment size (or MTU), send it
immediately.

• If the interface is idle, or the TCP_NODELAY flag is set, and the TCP
window is not full, send the packet immediately.

• If there is less than 1/2 of the TCP window in outstanding data, send the
packet immediately.

• If sending less than a segment size, and if more than 1/2 the window is
outstanding, and TCP_NODELAY is not set, wait up to 200 msec for more
data before sending the packet.

In addition to the Nagle Algorithm, a delayed ACK timer can cause slow data
transfer over a switch. This timer is set when a single TCP/IP packet is
received at the receive side of a connection. If a second packet is received,
then the timer expires, and an acknowledgment is sent back to the sending

The Nagle Algorithm states that under some circumstances, there will be a
waiting period of 200 msec before data is sent. The Nagle Algorithm uses
the following parameters for traffic over a switch:

• Segment size = MTU or tcp_mssdflt or MTU path discovery value

• TCP window size = smaller of tcp_sendspace and tcp_recvspace values

• Data size = application data buffer size

Nagle algorithm
© Copyright IBM Corp. 1999 133

side. You rarely see this on small segment size (MTU) networks because a
large buffer of data results in more than one packet being transmitted.
However, on large segment size networks like the SP Switch, writing a 32 KB
buffer results in only one packet. That same buffer on smaller-segment-sized
networks results in multiple packets, and the delay ACK timer is not used.

With the rfc1323 parameter not set to 1, and having a large segment size for
the network, sending full IP packets can cause a 5 packet/sec rate. Table 13
lists the window size where this occurs for various network segment sizes.

Table 13. TCP/IP Pacing Degradation Window

The effect of the Nagle algorithm or delayed ACK timer is easy to see if only
one socket connection is running. If you check the packet rate over the switch,
you should see an average of 5 packets/sec. Typically, a transfer rate of 150
to 300 KB/sec is reported by an application. To check the packet rate over the
switch, use the following command:

netstat -I css0 1

The output will show the switch and total IP packet rates per second as
shown in Figure 38 on page 135.

Network Type MTU TCP Window Nagle Hole

Ethernet 1500 1501-2999

Token Ring 1492 1493-2983

Token Ring 4096 4097-8191

FDDI 4352 4353-8705

ATM 9180 9181-18359

ATM 60416 60417-120831

SP Switch 65520 65521-131039

FCS 65536 65537-131071

HiPPI 65536 65537-131071
134 RS/6000 SP System Performance Tuning

Figure 38. netstat -I Command

The following are suggestions on how to avoid the Nagle algorithm:

1. If you are running an application and do not have access to the source
code, use the no command to increase the TCP window.

Increasing the TCP window may not always be effective because
increasing the tcp_sendspace and tcp_recvspace sizes on the sending
and receiving nodes may cause other negative effects on the SP system
or to other applications running on the system. Make sure that you set
rfc1323 to 1 if the window size exceeds 65536.

2. Change the MTU size of the switch.

Changing the MTU of the switch moves the window and buffer size
combination where the 200 msec delay is invoked. When writing 32 KB
buffers to a TCP connection, if the TCP/IP window is 65536, only 5
packets/sec are transmitted. If you change the MTU of the switch interface
to 32768, there is no delay on transmitting a 32768 buffer because it is the
same size as the segment size of the switch. However, reducing the MTU
of the switch to 32768 degrades the peak TCP/IP throughput slightly.
Reducing the MTU even further degrades the peak throughput even more.

3. From within an application, you can increase the TCP window size on the
socket by using the SO_SNDBUF and SO_RCVBUF settings on the
socket.

• For good performance across a switch, we suggest that both
SO_SNDBUF and SO_RCVBUF be set to at least 524288 on both the
client and server nodes. You need to set both sides since TCP uses the
lowest common size to determine the actual TCP window.

• If you set the SO_SNDBUF and SO_RCVBUF sizes larger than 65536,
you need to set TCP_RFC1323 also on the socket unless the no
options already set it. Setting TCP_RFC1323 to 1 takes advantage of
window sizes greater than 65536.

netstat -I css0 1
input (css0) output input (Total) output

packets errs packets errs colls packets errs packets errs colls
125696 0 110803 0 0 356878 0 287880 0 0

119 0 216 0 0 123 0 221 0 0
117 0 222 0 0 120 0 224 0 0
115 0 225 0 0 117 0 227 0 0
115 0 202 0 0 117 0 204 0 0
115 0 207 0 0 117 0 209 0 0
116 0 201 0 0 118 0 203 0 0
115 0 211 0 0 118 0 213 0 0
Common SP Performance Problems 135

• You also want to ensure that the system setting for sb_max is at least
twice the TCP window size or else sb_max will reduce the effective
values for SO_SNDBUF and SO_RCVBUF.

4. Set TCP_NODELAY on the socket of the sending side to turn off the Nagle
algorithm.

All data that is sent will go immediately, no matter what the data size.
However, if the application sends very small buffers, you will significantly
increase the total number of packets on the network.

One common problem that causes unexpected Nagle behavior is setting
tcp_sendspace and tcp_recvspace to a high number and forgetting to set
rfc1323 to 1 on all nodes. In addition, setting tcp_sendspace and
tcp_recvspace large on one node and not on the other nodes can cause
Nagle to occur.

On systems where a node is talking to several other nodes, it is harder to see
the Nagle effect. In this case, the only way to detect it is to examine iptraces
to extract a single socket's traffic. What can happen is that if one node is
talking to two nodes, each connection can be seeing the Nagle effect, and the
packet rate over the switch is 10 packets/sec. If you have one node talking to
five nodes, the packet rate can be 25 packets/sec but the aggregate switch
traffic 1.5 MB/sec. This rate exceeds the throughput on a slow Ethernet
network, but is well below what the switch can handle.

9.2 External Server Considerations

Connections through external networks to other machines can restrict
performance on certain nodes on the SP system. For example, some external
servers may not support rfc1323 and, therefore, can only use a maximum
TCP/IP window of only 65536 to transfer data to or from a node. This causes
performance problems with connections to these servers to behave differently
from other connections on the same node to other SP nodes.

In some cases, external servers have to communicate with additional external
servers. When such external servers establish a connection, the negotiated
tunables may be set to small values. For example, the TCP/IP window size
value is set to the least common denominator. In the case of an external
server having a tcp_recvspace of 16384, that is the TCP/IP window size
used. Such a small TCP/IP window size provides slow throughput if the
sending node is on the far side of a switch from a gateway node.

If traffic is routed through other external network routers, you may not be able
to use the optimal maximum transmission unit (MTU) or tcp_mssdflt size for
136 RS/6000 SP System Performance Tuning

that network. If this happens, adjust the tcp_sendspace and tcp_recvspace
values accordingly.

To find the optimal tcp_sendspace and tcp_recvspace sizes, get the largest
MTU size that the router will handle to other networks of the same type. To
get the optimal tcp_sendspace and tcp_recvspace sizes for single-stream
transfers, use the formula shown in Figure 39.

Figure 39. Calculating tcp Send/Receive Space Sizes

This does not apply to the RS/6000 SP switch because the switch adapter
does not have transmit and receive queues. See “Switch Adapter Pools” on
page 79 for more information on tuning rpoolsize and spoolsize.

The number produced by the formula in Figure 39 is the largest that you can
use for a single socket before the adapter drops packets and TCP/IP has to
do a retry on the dropped packets. If you have more than one active socket,
the size calculated using this formula needs to be divided by the number of
active sockets. You want to avoid dropping packets on the adapter to get
optimal throughput performance.

Some of these problems cannot be overridden using tunables on the node but
need to be considered when tuning a node that communicates to outside
servers. On AIX 4.2.1, there are two new tunables that help in solving the
small packet problem to external servers. These no settings are:

• tcp_pmtu_discover

• udp_pmtu_discover

By setting these tunables to 1, when a connection is established to a
connection on a remote network (if the external server or workstation
supports MTU path discovery), the connection will determine the largest
segment size that it can send without fragmentation. This eases the problem
of setting tcp_mssdflt to a compromise value.

t = m * q

where:

t = Optimal tcp_sendspace and tcp_recvspace sizes

m = Largest MTU size that the router will handle to other networks

q = Smaller of the transmit queue and receive queue size for the adapter
Common SP Performance Problems 137

9.3 Single-Server Multiple-Client Node Problems

Some application configurations, such as NFS, consist of a parent or server
node with multiple client or remote nodes. Such applications have a potential
for the client nodes (through a large TCP window size) to send large volumes
of data to one server node using the nonblocking switch network, whereas the
server node cannot handle the total traffic from the client nodes, due to
demands on the server’s mbuf pools. The dropped packets will be reflected in
a large number of failures in netstat -m on the server node.

To further illustrate, if you had 64 client nodes, as shown in Figure 40 on page
139, with a TCP window size of 512 KB, the server node would need buffer
space of 32 MB just to accommodate the incoming packets from the client
nodes, all other connections and traffic aside. Remember, the maximum
amount of space the can be allocated to thewall is 64 MB. To determine the
server node mbuf requirements, get the number of client nodes that will
simultaneously send data to the server node, multiply by the TCP window
size on each client node, then again multiply by the number of sockets that
each client opens on the server. If the server has multiple roles, add
additional mbuf space as required. You can see how easy it can be to exceed
the maximum amount of memory that can be allocated for the network
(thewall) or even the limitations of the server node itself, which may only
contain 128 MB of memory. To prevent this scenario from happening, you
must reduce the combined amount of data arriving from the client nodes to
the server nodes.
138 RS/6000 SP System Performance Tuning

Figure 40. Single-Server Multiple-Client Scenario

You can use two methods to accomplish this:

The first is to try to restrict the client nodes by setting tcp_sendspace and
tcp_recvspace small enough so that the combined data sent by the client
nodes does not exceed the buffer space on the server. While this reduces the
receive buffer space required on the server, if that traffic must then be
redirected to a terminal or remote file, you need to double the mbuf
requirements to accommodate sending it back out again. If there are other
applications on the client nodes that require the high switch bandwidth, they
will not get the same throughput and may suffer due to the smaller setting for
tcp_sendspace and tcp_recvspace. Traffic will back up, and applications may
slow down. It is an administrator’s tradeoff for large data transfers on the
client versus mbuf allocation on the server. To determine what values you
should assign to tcp_sendspace and tcp_recvspace, first select the maximum
number of buffers to allocate in the servers’ mbuf pool, divide by the number
of client nodes, and multiply by the average message size to get your window
size. Set tcp_send and tcp_receive on both the client and server side.

The second method would be to restrict tcp_recvspace on the server node.
The TCP window is negotiated upon establishment of the connection; the

32
MB

Server

.................512K

Client 1

512K

Client 2

512K

Client 3

512K

Client 4

512K

Client 64
Common SP Performance Problems 139

window value will be set to the lesser of tcp_sendspace and tcp_recvspace
and will only impact client-to-server connections.

If at all possible, the best solution would be to set the socket window sizes
from within an application leaving the tcp_sendspace and tcp_recvspace
settings alone This can be done by using the setsockopt() call within the
application to change the values for SO_SNDBUFF and SO_RCVBUFF.
Changing these values affects only the socket that the setsockopt() call was
made against. All other connections would use their own setsockopt() call
settings or the tcp_sendspace and tcp_recvspace settings.

Keep in mind that UDP has no mechanism for windowing and can have a
greater amount of outstanding I/O on the connection. UDP should not be
used to send large amounts of data over the switch because you could
deplete the servers’ mbuf pools very rapidly. Also, be aware of very small
messages. The minimum allocation from the mbuf pool is 256 bytes; so, you
can chew up all the mbuf space with a small amount of data.

An example of how a typical program is modified to handle the setsockopt()
call is shown in Figure 41:

Figure 41. Sample setsockopt() Call

/*We are the client if transmitting*/
if(options) {

if(setsockopt(fd,SOL_SOCKET, options, &one, sizeof(one)) <0
err("setsockopt");

}
if(nodelay) {

if(setsockopt(fd,IPPROTO_TCP,TCP_NODELAY,&one, sizeof(one)) <0
err("nodelay");

}
if(rfc1323) {

if(setsockopt(fd,IPPROTO_TCP,TCP_RFC1323,&one, sizeof(one)) <0
err("rfc1323");

}
if (setsockopt(fd,SOL_SOCKET,SO_SNDBUF,&window,sizeof(window)) <0)

err("setsendwindow");
if (setsockopt(fd,SOL_SOCKET,SO_RCVBUF,&window,sizeof(window)) <0)

err("setreceivewindow");
if(connect(fd,&sinhim, sizeof(sinhim)) < 0)

err("connect");
mes("connect");
140 RS/6000 SP System Performance Tuning

9.4 Gateway or Router Node Problems

Gateway or router nodes direct traffic between external networks and the SP
system. Two different types of nodes are used as gateways: an existing SP
node acting as a gateway, and the SP Switch used as direct-attached SP
Router node, also known as the GRF router node.

If a lot of traffic is routed through a router node, it affects any other job using
that node. We suggest that router or gateway nodes not be assigned to high
priority or fast response time parallel jobs unless there are no other nodes
available, or the amount of expected network traffic is small.

When tuning a router or gateway, you need to plan on enough buffer space in
the node to handle traffic on multiple interfaces. Traffic from the SP Switch
uses the send and receive pools. Traffic to Ethernet, Token Ring, and FDDI
uses the system mbufs, while ATM uses its own buffer areas. Having a large
difference between the switch pools and the amount of space for other
adapter traffic leads to bottlenecks or dropped packets. The best initial
settings are for the same amount of space for both sets of interfaces.

To optimize the packet size sent to remote networks if you are running AIX
4.2.1 or higher, you must set the variable tcp_pmtu_discover = 1. This lowers
the overhead on the gateway or router node. However, watch out for networks
with more than a couple of hundred hosts. By turning tcp_pmtu _discover on,
you are in effect creating a route in your routing table to every host that is out
there. Any network greater than a couple of hundred hosts becomes very
inefficient and performance problems arise. Be sure to turn this variable on if
your network has the correct number of hosts.

9.5 Tuning the Control Workstation

Various models of network adapters can have different values for transmit
queue sizes as shown in the following table:

Table 14. Control Workstation Network Adapter Queue Settings

You can set these values using SMIT or the chdev command. If the adapter
you are changing is also the adapter for the network you are logged in
through, you will have to make the changes to the databases only. Then,

Adapter Type Queue Setting

PCI Adapter 256

MCA adapter AIX 4.2.1 or later 512
Common SP Performance Problems 141

reboot the Control Workstation (CWS) for the changes to become effective.
Here is the command:

-P -l ent0 -a xmt_que_size=512

1. You must then reboot CWS in order for the changes to take effect.

2. To determine that the Transmit Queue Size has been changed to the
proper value, issue the command:

lsattr -E -l adapter_name

where adapter_name= ent0.

9.5.1 Change Control Workstation Maximum Default Processes
When you first install your system, the number of processes is set to an AIX
default. You will not be able to continue installing your system with this default
value. The value must be increased. IBM suggests changing the maximum to
256. You can do this either with the SMIT panels or at the command line. The
command is:

chdev -l sys0 -a maxuproc=’256’

9.5.2 Change the Control Workstation Tunables
When you first install your system, the network tunable values are set to AIX
defaults. Your system may not run efficiently with these values. Use the no

command to display these values. When installing PSSP on your CWS,
change the network tunables on the CWS to the values suggested in Table
15.

Table 15. Initial Control Workstation Parameters

Tunable Recommended Initial Value

thewall 16384

sb_max 163840

ipforwarding 1

tcp_sendspace 65536

tcp_recvspace 65536

udp_sendspace 32768

upd_recvspace 32768

tcp_mssdflt 1448
142 RS/6000 SP System Performance Tuning

When you change a network tunable value, it takes effect immediately.
However, it is not preserved across a boot. To make the changes to the
tunables effective across boots, add the no -o commands you used to change
the network tunables to the bottom of the file /etc/rc.net. Remember that this
is different from the nodes in the SP cluster. The dynamic tuning changes for
the nodes need to be done in the /tftpboot/tuning.cust file.

9.6 ARP Cache Tuning

Address Resolution Protocol (ARP) translates Internet addresses for IP into
unique hardware MAC addresses for all adapters on local links to a node. If a
MAC address is not in the ARP cache, then, when transmitting to a remote
adapter, an ARP broadcast is sent requesting the hardware address. These
addresses are kept as a series of entries in buckets. The size and number of
buckets are configurable. Configurations larger than 150 nodes in your
RS/6000 SP environment could have performance problems due to the size of
the ARP cache.

The variable arptab_nb specifies the number of ARP table buckets that can
be stored in a node’s ARP cache at any one time. This variable can be
modified with the no command and is set in the /etc/rc.net script. The default
value of 25 is not sufficient in environments with more than 150 nodes.

The second variable, arptab_bsiz, specifies (ARP) table bucket size. The
default value is 7. The last ARP variable, arpqsize, specifies the maximum
number of packets to queue while waiting for ARP responses. The default
value is 1. The arpqsize value is increased to a minimum value of five when
path MTU discovery is enabled. The value will not automatically decrease if
path MTU discovery is subsequently disabled. This attribute applies to AIX
Versions 4.1.5, 4.2.1, and later. The arpqsize variable is a runtime loadable
attribute.
Common SP Performance Problems 143

The relevant no command options are shown in Table 16.

Table 16. Default ARP Parameters in AIX.

9.6.1 Updating the ARP Cache Size
The no commands to change the ARP cache size should be placed in
/etc/rc.net, right after the first line in the file. If the changes are not placed at
the beginning, and HACMP is installed, the changes may not take place.
Figure 42 shows how the /etc/rc.net file should look after changes have been
made.

Figure 42. ARP Customizations

9.6.2 Determining the ARP Tuning Settings
For fast lookups, a large number of small buckets is ideal. For memory
efficiency, a small number of medium buckets is best. Having too many
buckets wastes memory (if the arptab_nb size were set to 128, bucket
numbers above 66 would rarely be used). The recommended way to calculate
the values for ARP cache sizing follows.

Parameters AIX System Defaults Definition

arptab_nb 25 Number of buckets.

arptab_bsiz 7 Number of entries in each
bucket.

The total available ARP entries are calculated using the variables:

arptab_nb * arptab_bsiz.

In a default configuration, this gives us 175 ARP entries.

Calculating ARP entries

#!/bin/ksh
/usr/sbin/no -o arptab_bsiz=10
/usr/sbin/no -o artab_nb=64
144 RS/6000 SP System Performance Tuning

For systems with greater than 150 nodes, round the number of nodes down to
the next power of 2, and use that for arptab_nb. Table 17 shows these values
for systems from 1 to 512 nodes.

Table 17. Determining ARP Tuning Settings Based on the Number of Nodes

For nodes that have more than three network adapters, set arptab_bsiz to
twice the number of active IP interfaces. Table 18 lists the sizes of the
arptab_bsiz value based on the number of IP interfaces.

Table 18. Determining ARP Tuning Settings Based on Number of IP Interfaces

9.6.3 Detecting ARP Thrashing
You can also evaluate your current parameters. Use arp -a to get the current
contents of your ARP cache. See if any of your buckets are full. You can do
this by pinging an IP address on a local subnet that is not in the ARP cache
and is not being used. See how long the ARP entry stays in the cache. If it
lasts for a few minutes, that particular bucket is not a problem. If it disappears
quickly, that bucket is doing some thrashing. Carefully choosing the IP
addresses to ping will let you monitor different buckets. Make sure the ping
actually made the round trip before timing the ARP cache entry.

Number of nodes arptab_nb value

1-64 25(default)

65-128 64

129-256 128

257-512 256

Number of interfaces arptab_bsiz Value

1-3 7

4 8

5 10

6 12

7 14

8 or more 2 x number of interfaces
Common SP Performance Problems 145

9.6.4 ARP Cache Problem Determination
• Systems with more than 150 nodes can suffer ARP cache thrashing.

• Starting with PSSP2.3, Topology Services uses both the switch and SP
Ethernet for heartbeating.

• ARP cache thrashing shows us the ARP cache containing a large number
of entries. Issue the following command to determine how many ARP
entries there currently are:

arp -a | wc -l

• Changes to the ARP cache settings must be made in rc.net. Making
changes using the no command has no effect on a running node but
increases the pool size needed or can cause exhaustion of the pools.
146 RS/6000 SP System Performance Tuning

Chapter 10. ADSTAR Distributed Storage Manager (ADSM) Tuning

When running ADSM on the SP system, the performance of a backup or
restore is affected by several tunable settings. However, depending on the
backup destination or restore source, the tunables and their settings are
different. The following section lists the settings to initially try for running the
ADSM server on MVS over an Escon channel and running the ADSM server
on an SP system node. Because ADSM is not always the only application
running on a client node or server, some of these values may not be
reasonable in your environment.

There are up to four places where various tunables can be set to optimize the
performance of ADSM. The following sections list these places and the initial
values to use for ADSM over a switch, as well as ADSM over Escon to MVS.

10.1 SP Client Node Network Tunables

Table 19 shows the no tunable values that will achieve the best ADSM
performance on the client nodes.

Table 19. ADSM Client Node Tuning Parameters

If you already have a larger value for thewall, you need to keep it.

Parameter Switch Escon to MVS

thewall 16384 16384

sb_max 1310720 1310720

rfc1323 1 1

tcp_mssdflt 32768 32768
© Copyright IBM Corp. 1999 147

10.2 SP Client Node ADSM Tunables

Table 20 shows the entries to use in the /usr/lpp/adsm/bin/dsm.sys file on the
ADSM client nodes.

Table 20. ADSM Client Configuration File

10.3 SP ADSM Server Node Tunables

Table 21 shows the no tunable values that will achieve the best ADSM
performance on the SP ADSM server node.

Table 21. ADSM Server Node Tuning Parameters

If you already have a larger value for thewall, you need to keep it. Table 22
specifies the proper parameter entries to use in the
/usr/lpp/adsm/bin/dsmserv.opt file on the SP system ADSM server node.

Table 22. ADSM Server Configuration File

Parameter Switch Escon to MVS

TCPWindowsize 256 64

TCPBuffsize 32 32

txnbyte 25600 25600

tcpnodelay Y Y

Parameter Switch Escon to MVS

thewall 16384 N/A

sb_max 1310720 N/A

rfc1323 1 N/A

tcp_mssdflt 32768 N/A

Parameter Switch Escon to MVS

TCPWindowsize 256 N/A

TCPBuffsize 32 N/A

Txnbyte 25600 N/A

tcpnodelay Y N/A
148 RS/6000 SP System Performance Tuning

10.4 Escon Gateway Node Tunables

Table 23 shows the no tunable values that will achieve the best ADSM
performance on the node acting as the gateway across Escon.

Table 23. Escon Gateway Node Tuning Parameters

If you already have a larger value for thewall, you need to keep it. You will also
need to set the MTU size of the Escon interface to 4096. To do that, you can
issue the following command on the node with the Escon interface:

ifconfig es0 -mtu 4096

10.5 MVS ADSM Server Tunables

Table 24 shows the tunable settings on MVS that will get you peak throughput
either across a switch or across a single Escon channel to MVS. Your actual
throughput will be determined by the speed of the media being backed up to
or restored from the SP system server or MVS server.

Table 24. MVS ADSM Settings

You will also need to set the segment size on the Escon interface to 4096.
These changes are in the gateway statement in the TCP/IP dataset definition.
Here is a part of a sample dataset definition:

...

GATEWAY

129.40.15.11 = ESCF00 4096 HOST

Parameter Switch Escon to MVS

thewall N/A 15384

sb_max N/A 131072

rfc1323 N/A N/A

Parameter Data Data

DATABUFFERPOOLSIZE 240 32768

LARGENVELOPEPOOLSIZE 240 8192
ADSTAR Distributed Storage Manager (ADSM) Tuning 149

150 RS/6000 SP System Performance Tuning

Part 3. Performance Tools
© Copyright IBM Corp. 1999 151

152 RS/6000 SP System Performance Tuning

Chapter 11. IBM Performance Tools

In this chapter, we discuss the tools available in AIX that are commonly used
in determining and fixing performance related problems. Our main emphasis
in this book is the interpretation of the information provided by these
commands and not their syntactical use.

For a comprehensive discussion of the RS/6000 performance tools and their
use, refer to RS/6000 Performance Tools in Focus, SG24-4989.

11.1 Overview

Tuning an RS/6000 SP requires an understanding of the work load that the
RS/6000 SP will perform. Once you have this understanding, tuning of the
system can commence. In AIX, on the RS/6000 SP, a wide variety of tools are
available to first identify and understand the work load and then to help set up
the system environment so that it is as close as possible to the ideal
execution environment for the work.

Refer to Figure 43 on page 154 for an overview of the tuning commands and
how they affect the various subsystems.
© Copyright IBM Corp. 1999 153

Figure 43. System Tuning Overview

The commands discussed in this chapter are provided as part of AIX. It is
natural to assume that their use with the RS/6000 SP is the same as with the
RS/6000 Symmetrical Multi-Processor (SMP) systems. This is not always the
case. Often, we can adopt a more aggressive approach. An RS/6000 SP
complex often requires several different tuning profiles. Each node or group
of nodes performing different aspects of the work requires separate
investigation. In a small number of cases, mainly when tuning an RS/6000 SP
used for scientific research, the complex as a whole can be tuned using a
single set of performance measurements and values.

Two categories to consider when using these commands on an RS/6000 SP
are:

1. The nodes perform several different roles.

The approach in this case is to compromise and trade the performance of
one role off against another.

We are more conservative when selecting values and choosing options.
System tuning should not heavily bias one role at the expense of another

Memory

CPU

Disk

Network

sar
iostat
lsps
lslv
cpu_state

svmon
rmss

lockstat
filemon
fileplace

vmstat
ps

vmtune
schedtune

AIX Tools
Perfagent Tools
Sample Tools
Adapter Tools
Switch Tools

no
netstat
nfsstat

netpmon

vdidl2
vdidl3

lsattr
entstat
tokstat
fddistat
atmstat
estat
154 RS/6000 SP System Performance Tuning

of equal or greater importance. Less important work still needs
consideration, which then often compromises the tuning with respect to
key applications.

2. The nodes perform specific roles.

More aggressive tuning options and values can be selected. Each node is
tuned (and biased) towards the ideal execution environment for the
specific role.

We do not disregard the needs of other nodes. The tuning of a node
cannot, for example, disregard the need to cooperatively share the
network or a shared drive. Nor can the tuning neglect the primary reason
the node is performing the task/role. For example, a Network File Server
cannot be tuned exclusively for file management because it must, after all,
serve those files to others across the network.

In a commercial environment, as the size of the complex increases, the
nodes that make up the complex often take on specific roles.

With scientific applications, we typically see less mixing of applications in the
complex. The complex as a whole is often aggressively tuned to run a single
application. Tuning these systems requires a greater understanding of the
application. For example, a large scientific application often performs a series
of calculations, which is followed by a communications phase, and the cycle
repeats. There should be a compromise between tuning for raw computation
and network throughput. One phase may be biased at the expense of others
but not to the exclusion of all others.

As the application roles for each node or group of nodes become specific,
tuning becomes easier because:

• Templates can be built with predetermined tuning options.
• Determining causes and rectifying performance are simplified.
• The complex operates closer to its ideal performance levels with respect

to a particular application.
• A segregated work load is easier to understand.

A final point before we discuss the tools available: AIX, PSSP, and any other
tools or packages are overhead. Always tune the system to reduce their
resource requirements.

11.2 Managing Memory Resources

Memory is a valuable and critical resource. Insufficient memory or poor use of
memory results in serious performance problems.
IBM Performance Tools 155

The tools in this section are used to identify memory-related performance
problems and to correct or minimize them.

11.2.1 Monitoring Memory with vmstat
This command provides statistical information collected by AIX for the Virtual
Memory Manager (VMM), Central Processing Unit (CPU), and process
scheduler.

In this section, we review aspects of this command that are associated with
the VMM.

Use this command during periods when the system work load is
representative of the system’s expected work load. In some cases a system
has several work load patterns. It is important to gain an understanding of
memory utilization during these periods.

Example:

The output shown in Figure 44 was captured using vmstat 5 10 . Using this
command, we monitored the changing memory usage every five seconds for
a total of 50 seconds. The first line is statistical information collected by AIX
since the system was last booted.

Figure 44. vmstat Output

If the fre column (number of pages in the free list) is low (below 2 * MB of
real memory - 8), and the pi column (page in rate/s) exceeds 5 per second,
memory is overcommitted.

vmstat 5 10
kthr memory page faults cpu
----- ------------ ----------------------- ------------- -----------

r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 219963 201 0 0 0 14 50 0 138 457 65 13 10 59 18
2 2 217167 3002 0 0 0 25 34 0 992 1638 238 30 8 49 13
3 2 221754 228 0 0 1 402 1736 0 959 1198 217 31 8 56 5
3 2 216648 5034 0 0 0 65 84 0 943 1383 194 31 7 60 1
3 2 221020 536 0 0 0 0 0 0 948 2697 181 31 17 52 0
3 2 222456 437 0 0 0 311 406 0 953 1730 187 35 12 52 0
3 2 214221 8633 0 0 0 13 19 0 960 2955 224 25 14 58 3
4 2 216900 5887 0 3 0 0 0 0 969 19824 381 31 17 48 4
3 2 216366 5902 0 0 0 0 0 0 949 29553 193 30 9 59 2
3 2 216054 4472 0 0 0 0 0 0 973 2570 274 26 11 46 17
156 RS/6000 SP System Performance Tuning

A high page scan (sr) to page steal (fr) ratio indicates that the memory
subsystem is overactive. The higher this ratio, the more time the VMM is
spending searching for available memory to allocate. Further investigation of
this should be undertaken.

In AIX version 4 and onward, the page reclaim column (re) is always 0. Page
reclaims (a page that is released by the VMM and then reclaimed by the
same process before allocation to another process) are no longer recorded.

11.2.2 Monitoring Memory with sar
This command reports the values of the operating system activity counters,
which are a quick and easy way to check on the system work.

Information for the VMM is shown by the paging activity counters.

Example:

Figure 45 on page 158 shows a system that is lightly loaded. The VMM has
no difficulty fulfilling page requests. On average, 203 page faults per second
were generated. The VMM maintained a large number of free memory slots
throughout the time monitored. It was not necessary for the VMM to cycle
through memory searching for free pages, and very little paging I/O was
required.

If this system’s performance was considered, we would conclude that
memory is not a contributing factor to any problems.
IBM Performance Tools 157

Figure 45. Monitoring Paging with sar

In Figure 45 on page 158, there is a 3-second peak in paging. This indicates
an uneven work load distribution. In a heavily loaded system, these peaks
need to be investigated. A multiuser environment needs a balanced work load
to maintain a consistent response time for users. In our experience, users do
not remember 999 subsecond responses. They remember the one that took 5
seconds.

11.2.3 Monitoring Memory with lsps
This command provides information about the paging space. Use it to check
how much virtual memory is used. It is useful to know how much real memory
is extended when considering a memory upgrade. If there is heavy paging,
and memory is only extended by a small amount, additional memory is a very
cost-effective upgrade.

Example:

Figure 46 on page 159 shows an example of the paging area for our system.
We see that real memory is currently extended by 110 MB.

sar -r 1 10

AIX sp3en0 2 4 004008966700 09/29/98

00:25:01 slots cycle/s fault/s odio/s
00:25:02 63326 0.00 248.18 1.82
00:25:03 63326 0.00 0.88 0.00
00:25:04 63325 0.00 0.91 0.00
00:25:05 63325 0.00 0.00 0.00
00:25:07 63529 0.00 212.73 3.64
00:25:08 63446 0.00 941.46 8.13
00:25:09 63333 0.00 526.32 4.39
00:25:10 63333 0.00 0.00 0.00
00:25:11 63333 0.00 0.00 0.00
00:25:12 63333 0.00 0.00 0.00

Average 63361 0 203 2
158 RS/6000 SP System Performance Tuning

Figure 46. Viewing Paging Space

The system paging area is spread across two drives. Paging to disk is
occurring evenly across the two disks.

11.2.4 Monitoring Memory with ps
This command lists the current processes and their status. By examining the
processes, we obtain an overview of how much memory each process uses.
We also obtain information of the VMM overhead for each process.

This command takes a snapshot of the system showing a set of statistics for
each process.

Example:

Figure 47 on page 159 is the output of ps gvc on our system. This example
has been reduced to 10 lines.

Figure 47. ps gvc Output

When using this command to review memory usage, examine:

• PGIN: Number of memory frames paged in
• %MEM: Percentage of system memory used

lsps -a
Page Space Physical Volume Volume Group Size %Used Active Auto Type
paging01 hdisk2 rootvg 144MB 38 yes yes lv
paging00 hdisk1 rootvg 128MB 38 yes yes lv
paging00 hdisk2 rootvg 16MB 38 yes yes lv

ps gvc
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

31124 - A 0:01 1058 1332 96 32768 35 84 0.0 0.0 db2sysc
31474 pts/13 A 0:05 704 516 52 32768 295 40 0.0 0.0 tcsh
33146 - A 0:00 0 112 232 32768 49 80 0.0 0.0 xlC_r

267064 ? A 0:00 185 384 12 32768 261 0 0.0 0.0 aixterm
268156 - A 0:10 0 15116 17572 32768 2862 2408 4.0 2.0 xlCentry
273814 - A 0:10 92 1036 148 32768 274 104 0.0 0.0 db2bp_s
274866 pts/3 A 0:00 0 112 232 32768 49 80 0.0 0.0 xlC_r
306432 - A 0:21 1507 1268 224 32768 485 16 0.0 0.0 dtwm
306722 pts/19 A 0:00 3 176 232 32768 195 220 0.0 0.0 ksh
307380 pts/3 A 0:10 0 12928 15384 32768 2862 2408 9.6 2.0 xlCentry
IBM Performance Tools 159

11.2.5 Monitoring Memory with svmon
This command shows the current state and usage of memory.

With the svmon command, memory page use can be viewed from the:

• System level
• Process level
• Segment level

11.2.5.1 Total Memory Usage
Always obtain an overview of memory usage from the system level. A
performance problem caused by memory contention is unlikely when the
system has sufficient memory available.

Example:

Figure 48 on page 160 is the output of svmon -G on our system.

Figure 48. Global Memory View

Interpretation of the svmon report:

• memory: System memory usage -
size: Total size of real memory
inuse: Amount of memory in use
free: Amount of free memory
pin: Pinned memory (memory pages that cannot be swapped out)

• inuse: Expands the column memory in use
work: The system working set (data and stack regions)
pers: Pages that are persistent on file.
clnt: Client allocated memory (network clients)

• pin: Expands the column pin
(Refer to preceding description of inuse columns)

svmon -G
m e m o r y i n u s e p i n p g s p a c e

size inuse free pin work pers clnt work pers clnt size inuse
65536 62724 2812 3508 41482 21242 0 3347 161 0 131072 25555

The values are displayed as memory pages. A memory page is 4069 bytes.

Note
160 RS/6000 SP System Performance Tuning

• pg space: Size of the paging space
size: Size of paging area
inuse: Amount of page space in use (size of real memory extension)

11.2.5.2 Process Memory Usage
When memory has been identified as a performance issue, isolating the
cause requires details on how memory is used by the processes.

Example:

Using ps gvc | grep app (refer to 11.2.4, “Monitoring Memory with ps” on
page 159 for more detail on the use of this command), we identified a process
running app (we are using app to represent an application). The process ID
was 51994.

Figure 49 on page 161 is an example of using svmon to view a process’s
memory usage.

Figure 49. Process Memory View

The app process has 4450 pages of memory allocated. A shared library,
which this process uses, accounts for 3260 of these memory pages. Every
additional copy of app, therefore, requires an additional 1190 pages of
memory:

• Number of memory pages used minus the number of memory pages
shared.

Further investigations of other processes executing on this system will
determine whether the shared library is used by other applications. Using this

svmon -P 51994
Pid Command Inuse Pin Pgspace

51994 find 4450 479 968

Pid: 51994
Command: app

Segid Type Description Inuse Pin Pgspace Address Range
380e work sreg[5] 1069 478 959 0..65535
48d0 work lib data 15 0 0 0..358
4411 work shared library text 3260 0 9 0..65535
6b7e work private 98 1 0 0..43 : 65304..65535
62d8 pers code,/dev/hd2:49266 8 0 0 0..7
IBM Performance Tools 161

information, we can determine whether the memory overhead for the shared
libraries should be considered a system overhead or an application overhead.

Using svmon, memory usage can be classified as:

• System
• Application shared
• Application
• Application instance

This information is important for:

• Assessing a system’s memory requirements
• Evaluating application mixes for nodes
• Identifying candidate applications to be shifted

The Address Range column shows where in the allocated memory segment
the process has referenced (the process’s memory footprint). This allows
determination of how much free physical memory is required for the
application to prevent paging.

11.2.6 Determining Memory Requirements with rmss
This command is used to limit the amount of real memory that the VMM will
use. It does this by changing the value held in the kernel that determines the
total amount of real memory installed.

Use rmss to determine the memory requirement of applications.

A careful and considered approach is required when using this tool. It sets
the total available real memory that the system will use. This degrades
system performance.

This command is used to determine how much real memory, at a minimum, is
required by the application for reasonable performance (which is set by
nonfunctional requirements). Often, more memory is better, and more
memory certainly will not degrade an application’s performance. At some
point, however, additional memory stops offering any real gain or ceases to
be cost-effective.

Performance tuning means making the best use of what is available.
Determining the minimum memory requirement will indicate if any significant
gains can be achieved by further system investigation. If the system does not
have the minimum amount of real memory required (which can be difficult to
determine without testing each application’s memory requirement), memory
162 RS/6000 SP System Performance Tuning

must be increased, or the application’s memory requirements must be
reduced.

Example:

rmss -c 128

This will change the amount of real memory that the VMM can use to a
maximum of 128 MB. Use rmss -r to change the amount of real memory that
the VMM can use back to the default value (real installed memory).

11.2.7 Tuning Memory with vmtune
This command changes the operational parameters of the virtual memory
manager.

Changes to the VMM parameters can affect the system performance
positively or negatively. Incorrect values can make the system unusable or
even cause a system to crash.

The primary goal of using this command is to reduce paging.

The VMM maintains a list of free real-memory page frames (a page or page
frame is 4096 bytes). Frames on this list are allocated to pages loaded into
memory. The VMM attempts to ensure that a minimum number of
real-memory pages are always available. The VMM will steal pages from
running processes to maintain this list.

In an ideal environment, executing and terminating processes releases
sufficient real-memory pages so that the memory requirements of other
processes can be met without paging.

Changes made with vmtune should be placed in /tftpboot/tuning.cust. This
will ensure that these changes will remain in effect when the system is
booted.

11.2.7.1 Setting the Threshold Free List Value
When the amount of real memory available drops below a threshold value,
page stealing starts. If this threshold value is too low, processes requesting
memory will wait while the VMM steals and saves pages which it can then

In the examples given, we have set the vmtune parameters to the default
values for our installation of AIX 4.3.2.0.

Note
IBM Performance Tools 163

allocate. If the threshold value is set too high, active processes will have
memory pages stolen when there are no impending requirements for
additional memory. This also sets up an environment where memory
thrashing is likely to be a problem.

With vmtune , the minimum number of real-memory page frames that must be
maintained in the free list can be set. When the VMM replenishes the free list,
it is set to a maximum size also set by vmtune .

To replenish the free list, VMM steals pages from other processes until the
maximum level is reached. Above this point, normal memory management is
resumed.

Example:

vmtune -f 120 -F128

Set the minimum free list size to 120 pages and the level at which page
stealing is to cease to 128 pages. Ensure that the minimum value is less than
the maximum value.

11.2.7.2 Setting Preferences Page Stealing
The VMM classifies memory as computational memory or file memory.
Computational memory is memory which is part of the process working set
(transitory - data regions and stack) or program code. File memory is all other
memory.

When real memory drops below a defined threshold, both computational and
file memory pages are stolen. Above a defined threshold, only file memory is
stolen. Between the two threshold values, file memory is stolen unless the
repage rate for file memory is high, in which case computational memory
pages are also stolen.

The decision to set these parameters can only be made with an
understanding of the workload. If the workload makes little reuse of file
memory, decrease the point at which computational memory is stolen.

Example:

vmtune -p 30 -P 60

Both computational and file pages are stolen if the percentage of free
memory is below 30 percent. Only file memory pages are stolen if the
percentage of free memory is above 60 percent. Between these two values,
the VMM will steal file memory unless file memory repage rates are high.
164 RS/6000 SP System Performance Tuning

11.2.8 Tuning Memory with schedtune
This command changes the operational parameters for the VMM and process
scheduler.

Changes to these parameters determine how AIX responds to memory
thrashing. They also set the criteria that AIX uses to determine that memory
thrashing is occurring.

Tuning with schedtune is done to smooth out infrequent peaks in load. The
operational parameters tuned with this command are not intended to act in
place of additional memory when the system’s physical memory falls short of
normal operating requirements.

In general, system tuning will not help when the system is short of memory.

Any system where memory is routinely overcommitted should have additional
memory added, or the application’s load/memory requirements should be
reduced.

If, as a result of setting these parameters, thrashing is allowed to occur, the
system may have a response perceived as better, but overall system
throughput will have been reduced.

Place any changes made with schedtune into /tftpboot/tuning.cust. This
ensures that, the next time the system is booted, the changes will remain in
effect.

11.2.8.1 Memory Overcommitment
As part of load control, the scheduler suspends processes when memory
becomes overcommitted. Memory is overcommitted once the threshold
number of pages written to the paging space is exceeded, and this threshold
value exceeds the number of page steals.

Example:

schedtune -p 4 -h 1

Memory is not considered overcommitted by the scheduler until four pages (p
X h) are written to page space per second, and this is greater than the
number of page steals per second.

In the examples given, we have set the schedtune parameters to the default
values for our installation of AIX 4.3.2.0.

Note
IBM Performance Tools 165

By default, -h0 is used, which disables memory control.

11.2.8.2 Process Suspension
When memory is overcommitted, the scheduling algorithm suspends
processes which repage (a page that belongs to the process and was
reclaimed, and then soon afterwards is required by the process) at a greater
rate than a threshold limit if this value exceeds the number of page faults for
the process.

Example:

schedtune -r 16 -p 4

A process is not suspended until it repages 64 (r * p) memory pages, and this
is greater than the number of page faults by the process.

11.2.8.3 Minimum Processes
When processes are suspended due to a memory overcommitment, a limit is
set on the minimum number of processes that must be kept active. This is to
prevent the system from being overly aggressive in suspending processes to
eliminate a memory overcommitment situation.

Example:

schedtune -m 8

The scheduler always keeps at least 8 processes active even if memory is
over committed.

11.3 Managing CPU Resources

Because the CPU is one of the fastest components in the system, it is rarely
utilized 100 percent for an extended period of time (a few seconds at most).
Often, when the CPU is 100 percent utilized by a program, the program is in
an infinite loop.

Commercial applications that tie up the CPU in this way, even when they are
not in an infinite loop, should be reviewed. In a multiuser environment, this is
not acceptable.

Scientific applications often require very high CPU utilization during certain
phases of execution. Workloads of this nature are normally run on dedicated
nodes. In an environment where these programs are being run, and the
nodes on which they execute have a mix of work, open a discussion with the
166 RS/6000 SP System Performance Tuning

user and/or systems administrator. Very few tuning options are effective in
this situation. We have found rmuser to be most effective.

It is difficult to draw a line when reviewing CPU utilization. If the percentage of
CPU utilization exceeds x, we have a system constrained by CPU is often a
wild stab in the dark to provide a definition.

An understanding of the environment and the workload is required. A
scientific application performing tight calculations is limited by the CPU at 100
percent utilization. Commercial applications will be limited below this point
because they are not always able to utilize the CPU resource when it is
available. The CPU requirement is unbalanced: at times processes are
waiting on the CPU resource, and, at other times, the CPU is idle.

11.3.1 Monitoring the CPU with vmstat
We have already reviewed this command in 11.2.1, “Monitoring Memory with
vmstat” on page 156.

vmstat is used to monitor CPU usage. It provides a single line report, which
shows a quick status of CPU utilization.

Example:

Figure 50 is an example of using vmstat 5 on a system with free CPU
resources. While monitoring this system, a peak in the workload occurs.
IBM Performance Tools 167

Figure 50. CPU Monitoring with vmstat Output

Interpreting system activity from this vmstat report:

1. The CPU is lightly utilized.

The idle average is 40 percent(id).
The users average is 40 percent (us).
The system average is 20 percent (sy).
The low I/O wait is (wa).

Conclusion: CPU utilization of 40 percent is not due to an I/O bound
system.

2. The system work load peaks.

The idle average is 0 percent.
The user average is 75 percent.
The system average is 25 percent.
Low I/O wait.
Free list low (fre).
High number of page scans (sr).

vmstat 5
kthr memory page faults cpu
----- ------------ ----------------------- ------------ -----------

r b avm fre re pi po fr sr cy in sy cs us sy id wa
0 0 25565 5251 0 0 0 0 1 0 131 365 64 1 2 96 1
6 0 41263 124 0 0 0 56 56 0 724 2564 450 41 24 34 0
3 0 40600 1374 0 0 0 97 114 0 746 2097 393 40 21 38 0
3 0 40769 1212 0 0 0 0 0 0 698 2142 389 40 24 36 1
6 0 41019 871 0 0 0 0 0 0 719 2707 493 48 22 27 3
0 0 41301 529 0 0 0 0 0 0 610 1439 304 25 10 64 0
2 0 41517 479 0 0 0 64 71 0 628 2588 421 47 23 23 7
6 0 43293 147 0 0 0 360 368 0 691 3429 407 74 26 0 0
8 1 43636 190 0 0 0 86 114 0 724 3899 508 67 33 0 0
6 0 44093 175 0 0 0 108 109 0 689 2807 378 71 29 0 0
7 0 44416 415 0 0 0 120 120 0 721 3676 448 67 33 0 0
7 0 44169 853 0 0 0 25 25 0 693 2927 403 74 26 0 0
6 0 43075 2363 0 0 0 0 0 0 653 2907 436 85 14 0 0
2 0 42395 3087 0 0 0 0 0 0 732 3413 432 80 17 2 1
3 0 42635 2764 0 0 0 0 0 0 718 3020 415 59 19 19 3
2 0 42748 2647 0 0 0 0 0 0 752 2704 432 55 16 29 0
1 0 41626 4092 0 0 0 0 0 0 748 2506 452 52 17 21 10
0 0 41228 4610 0 0 0 0 0 0 730 2806 450 54 17 26 3
3 0 40773 5216 0 0 0 0 0 0 673 2782 445 67 21 12 0
168 RS/6000 SP System Performance Tuning

High number of page steals (fr).

Conclusion: VMM is searching for memory to replenish the free list. This
overhead is constraining the user application CPU requirement.

3. Work load constrained by CPU.
The idle average is 0 percent.
The user average is 85 percent.
The system average is 15 percent.
No I/O wait.
Free memory available.
No paging.

Conclusion: The system is CPU bound. Users’ CPU utilization increased
as system CPU utilization decreased. This confirms the above conclusion
that VMM constrained the user CPU utilization.

4. The system work load drops.

the idle average is 20 percent.
The user average is 50 percent.
The system average is 20 percent.
The I/O wait is 10 percent.

Conclusion: The work load peak is over; a back log of work is being
cleared in the I/O subsystem.

The peak in workload was a few lines on this report, each line representing 5
real-time seconds. The peak in workload therefore lasted 40 seconds. Once
completed, the system response was still degraded while a backlog of work
was cleared.

Further investigation of this will be required. Identify the program/application
and determine its loading pattern (when and how often this application is
executed).

11.3.2 Monitoring the CPU with time
The time command gives CPU and real-time execution figures for commands
and applications.

Use this command to determine an application’s CPU utilization. A good
example of when it should be used is given in 11.3.1, “Monitoring the CPU
with vmstat” on page 167. An application was executed which used
substantial CPU resources. time can be used to quantify the CPU
requirement.

Example:
IBM Performance Tools 169

Figure 51 shows the result of using time to measure the CPU resource
requirement to execute our application apprep. This is an unobtrusive method
of collecting CPU utilization for applications.

Figure 51. Checking CPU Utilization with Time

11.3.3 Monitoring the CPU Using ps
We discussed this command in 11.2.4, “Monitoring Memory with ps” on page
159. This command can also be used to obtain an overview of CPU usage by
a process or group of processes.

Users tell us which programs take a long time to execute. This can be
misleading when investigating CPU utilization. A slow program is often not a
high user of the CPU. Use ps to determine which processes have high CPU
utilization, and thereby assemble a candidate set of programs to investigate.

Example:

Figure 52 on page 170 is a sample script using ps to find the top 10 CPU
users.

Figure 52. Top 10 CPU Users Script

Using the script in Figure 53, we see a situation on our system where a
number of processes have high CPU resource requirements.

time apprep

real 3m12.76s
user 2m38.72s
sys 0m26.54s

#!/bin/ksh

HEAD=`ps vc | head -n 1`

ps vc | head -n 1
ps gvc | grep -v "$HEAD" | sort +10 -r | head -n 10
170 RS/6000 SP System Performance Tuning

.

Figure 53. Top 10 CPU Users

Interpreting this example:

• The application apphog occupies the top 5 positions:

The application is not paging.

High CPU utilization (%CPU).

Short execution time (TIME).

• Analysis of report:

The application shows a high CPU utilization and was in execution for
only a short period of time.

In comparison to other programs, this one consumed a lot of CPU
resources in a very short period of time.

The program is not paging indicating the memory foot print is small and
may only be within the CPU cache.

• Conclusion:

This program is in a tight CPU intensive loop and may be in an infinite
loop.

The application apphog needs further investigation.

11.3.4 Monitoring the CPU with sar
In 11.2.2, “Monitoring Memory with sar” on page 157, we discussed using this
command to check paging statistics.

This command provides a simple method to review CPU utilization.

top10
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

34910 pts/6 A 0:20 0 296 424 32768 197 228 48.8 0.0 apphog
42064 pts/6 A 0:08 0 300 424 32768 197 228 29.6 0.0 apphog
37196 pts/6 A 0:01 0 316 424 32768 197 228 25.0 0.0 apphog
39602 pts/6 A 0:03 0 304 424 32768 197 228 20.0 0.0 apphog
40112 pts/6 A 0:02 0 308 424 32768 197 228 18.2 0.0 apphog
41028 - A 0:03 40 896 1184 32768 22 40 0.7 0.0 dtterm
25044 - A 8:35 44 268 44 32768 73 0 0.6 0.0 rvsdd
20488 - A 0:45 222 976 852 32768 22 40 0.5 0.0 dtterm

7770 - A 0:51 153 900 700 32768 22 40 0.4 0.0 dtterm
1562 - A 0:51 153 900 700 32768 22 40 0.2 0.0 dtterm
IBM Performance Tools 171

11.3.4.1 CPU Utilization Report
To obtain an overview of CPU utilization, that is, to determine how much time
is spent doing actual work versus the time spent being idle or waiting on I/O,
use the default sar options.

Example:

Figure 54 on page 172 is an example of using sar to report CPU utilization.
The report is for a system where the CPU is a limiting factor and is 100
percent utilized. The top10 CPU report discussed in 11.3.3, “Monitoring the
CPU Using ps” on page 170 should be used to find processes with high CPU
resource requirements.

Figure 54. CPU Utilization Report Using sar

11.3.4.2 CPU Queue Report
A controlling factor in CPU utilization for a system is an application’s ability to
maintain runnable work. If work is always available to processors when they
are free, the CPU’s full processing potential is used.

The scheduler maintains a run queue of work to be dispatched when a CPU is
available. If the scheduler is unable to put work in this queue, CPU resources
will be wasted. This is shown in the CPU idle or I/O wait time.

When CPU utilization is high, use sar to determine the reason:

sar 1 10

AIX sp3en0 3 4 000081007000 09/28/98

07:48:32 %usr %sys %wio %idle
07:48:33 77 23 0 0
07:48:34 82 18 0 0
07:48:35 81 19 0 0
07:48:36 79 21 0 0
07:48:37 81 19 0 0
07:48:38 80 20 0 0
07:48:39 79 21 0 0
07:48:40 81 19 0 0
07:48:41 77 23 0 0
07:48:42 67 33 0 0

Average 78 22 0 0
172 RS/6000 SP System Performance Tuning

• Is CPU utilization high due to efficient use by the application?

• Is CPU utilization high because the CPU is overloaded and we have a
backlog of work?

Example:

The sar report shown in Figure 55 on page 173 is from a node performing
CPU-intensive calculations. There are always six threads performing these
calculations, and they compete for CPU time.

Figure 55. Monitoring CPU Queue Lengths with sar

From the report shown in Figure 55, we can determine the following:

1. The run queue size (runq-sz , the threads that are dispatchable), and the
run queue utilization percentage (%runocc) over the 10 seconds monitored
remained the same.

Either the CPU is utilized by one thread with sufficient priority to keep the
CPU allocated, or these threads are CPU-bound and remain dispatchable
when forced to relinquish the CPU.

It is possible that, as one process gave up the CPU, it became
undispatchable and, at the same time, another process filled the vacant
position on the dispatchable queue. We monitored the system for 10

sar -q 1 10

AIX sp3en0 3 4 000081007000 09/28/98

09:20:49 runq-sz %runocc swpq-sz %swpocc
09:20:50 6.0 100
09:20:51 6.0 100
09:20:52 6.0 100
09:20:53 6.0 100
09:20:54 6.0 100
09:20:55 6.0 100
09:20:56 6.0 100
09:20:57 6.0 100
09:20:58 6.0 100
09:20:59 6.0 100

Average 6.0 100
IBM Performance Tools 173

seconds. It is unlikely that this situation would consistently occur over 10
seconds.

2. The dispatchable threads waiting to be paged in (swpq-sz) and the
percentage of time the swpq-sz queue is occupied (%swpocc) in our
example were 0.

This indicates that the running threads were always busy, and, therefore,
the VMM kept their pages active.

As the VMM kept their pages in real memory, the amount of real memory
in the node was adequate.

11.3.5 Monitoring the CPU with iostat
This command provides I/O statistics and is used to determine how
effectively the CPU is utilized.

Indications that the CPU is not efficiently utilized and that I/O, particularly disk
I/O, is the likely reason, are:

• CPU utilization is low.

• System performance is poor.

• The system is executing work.

• The CPU is forced to wait on I/O.

Isolating an I/O problem is covered in 11.4, “Managing Input/Output
Resources” on page 179. In this section we limit the discussion of this topic to
determining whether CPU utilization is low due to I/O.

Example:

Figure 56 shows a report collected from a lightly loaded system, using iostat
-t. The system’s CPU resource utilization is below 40 percent (% user + %
sys), and 6 percent of CPU time is spent waiting for I/O.
174 RS/6000 SP System Performance Tuning

Figure 56. Monitoring CPU I/O Waits Using iostat -t

In this example, I/O waits would not be considered a problem because the
system CPU resource shows a significant amount of idle time.

I/O waits are a problem when the CPU has very little idle time, in which case
CPU utilization is constrained by the I/O subsystem.

There are often I/O waits with a lightly loaded system. Since there are only a
few processes executing, the scheduler is unable to keep the CPU utilized.
Environments with few active processes and significant I/O waits require
application changes. Changing an application to use asynchronous I/O is
often effective.

As the number of processes executing on a system increases, it is easier for
the scheduler to find dispatchable work. I/O waits therefore diminish.

Enable I/O pacing to reduce I/O waits if:

• The system has a significant number of processes.
• It is expected that the CPU should remain busy.
• There are significant I/O waits.
• A large volume of writes are issued by a few (often one) processes.

11.3.6 Checking Active CPUs Using cpu_state
This command sets and displays which processors will be active when the
system is restarted. It is only available for SMP nodes (on uniprocessor
RS/6000 SP nodes, the flexibility of allowing the CPU to be disabled was not
deemed necessary).

With cpu_state, processors are selectively enabled or disabled. The changes
take effect when the node is rebooted.

iostat -t 1 10
tty: tin tout avg-cpu: % user % sys % idle % iowait

3.8 857.3 17.3 9.2 53.4 20.1
0.0 159.6 17.9 7.6 67.6 6.9
0.0 80.9 15.0 19.7 59.8 5.5
0.0 80.8 14.0 24.4 55.2 6.4
0.0 80.9 10.1 17.0 65.2 7.7
0.0 80.9 11.4 14.7 67.3 6.6
0.0 80.8 16.0 9.9 66.1 8.1
0.0 80.9 14.0 12.1 67.4 6.5
0.0 80.9 13.5 13.0 65.4 8.1
0.0 80.9 14.7 10.6 66.8 7.9
IBM Performance Tools 175

Generally, disabling processors reduces performance. We do not recommend
disabling CPUs on production systems.

When assessing the performance of applications, there are situations when
comparisons between an SMP and a uniprocessor are required, for example,
to determine the performance benefits of an SMP node.

We used this feature to perform low-level application tracing. With multiple
CPUs, it was difficult to paste execution streams into a sequenced execution
flow.

Example:

Figure 57 on page 176 is a report from an 8-way SMP node after 7 of the 8
processors were disabled.

Figure 57. Active CPU Report

11.3.7 Managing CPU Usage with nice and renice
Use these commands to set thread priorities.

A lower nice value for a thread increases the importance of the thread. A
normal nice value for a foreground process is 20, while a background process
normally has a nice value of 24.

AIX adjusts the priority of threads that do not have a fixed priority according
to the amount of CPU attention the process receives. AIX also adds to the
nice value a base value according to the types of processes. A background
process has a higher base value than a foreground process, for example.

cpu_state -l
Name Cpu Status Location
proc0 0 enabled 00-0P-00-00
proc1 1 disabled 00-0P-00-01
proc2 2 disabled 00-0Q-00-00
proc3 3 disabled 00-0Q-00-01
proc4 4 disabled 00-0R-00-00
proc5 5 disabled 00-0R-00-01
proc6 6 disabled 00-0S-00-00
proc7 7 disabled 00-0S-00-01
176 RS/6000 SP System Performance Tuning

Example:

nice +10 apphog

Start apphog with a lower process priority. In this case, 10 more will be
added to the default nice value:

renice +10 n (n is the process id)

Lower the priority of process n by 10.

11.3.8 Managing CPU Utilization with schedtune
In 11.2.8, “Tuning Memory with schedtune” on page 165 this command was
used to alter the scheduling parameters.

In this section, we discuss the parameters that are set using schedtune to
control the CPU resource allocation.

11.3.8.1 Controlling Process Priority
For threads that do not have a fixed priority, the priority is dynamically
adjusted. This is done by AIX in an attempt to give all processes a chance to
receive CPU time.

AIX adjusts priority using a penalty system, as follows:

• By penalizing any process that is executing when the 10ms timer interrupt
occurs:

1. Add 1 to the CPU usage counter assigned to the process.

The AIX dispatcher and scheduler only support threads. When a process is
started, a thread is also created. The thread performs work on behalf of the
process. When altering a process’s priority, its thread priority is effectively
altered.

Note

• Place changes made using schedtune into /tftpboot/tuning.cust. This
insures that, when the system is rebooted, the changes remain in effect.

• In the examples given, we have set the schedtune parameters to the
default values for our installation of AIX 4.3.2.0.

Note
IBM Performance Tools 177

2. Calculate a penalty value by multiplying the process’s CPU usage
counter by a definable penalty value and then dividing by 32.

3. Add the penalty value to the process nice value when determining the
process priority.

• By decreasing a process’s penalties once a second by multiplying the
CPU usage counter by a definable decay value and then dividing by 32.

Example:

schedtune -r 16 -d 16

The rate at which the penalty accumulates is 16 (-r 16). The penalty decay
rate is 16 (-d 16).

Effectively, the accumulate and decay rates are 0.5 (16 / 32).

Table 25 shows an example. This is the cycle for a process that is executing
on the CPU eight times when the 10ms interrupt occurs.

Table 25. Thread Priority Calculation

11.3.8.2 Controlling Timeslices
The CPU timeslice allocated to each dispatched thread is set using
schedtune . The default value is 10ms.

Processes often do not use the full timeslice allocated. If, during execution,
the thread becomes unrunnable (for example, it issues a synchronous I/O
request), another thread is dispatched.

10ms Timer Interrupt Usage Count Penalty Value Nice Value

Initial settings 0 0.0 60.0

1st 10ms interrupt 1 0.5 60.5

2nd 10ms interrupt 2 1.0 61.0

3rd 10ms interrupt 3 1.5 61.5

4th 10ms interrupt 4 2.0 62.0

5th 10ms interrupt 5 2.5 62.5

6th 10ms interrupt 6 3.0 63.0

7th 10ms interrupt 7 3.5 63.5

8th 10ms interrupt 8 4.0 64.0

1 sec interrupt 4 2.0 62.0
178 RS/6000 SP System Performance Tuning

The process of switching from one task to another is known as context
switching. When a context switch occurs, information must be saved to allow
the process to be resumed again and the CPU instruction pipeline flushed.
When a task is resumed, the saved information is retrieved and execution
begins at the point where the context switch occurred.

When other processes have been dispatched in the meantime, or the process
does not maintain an affinity with the CPU, additional work is required to
restart a task:

• The Process and CPU cache are reloaded.
• Translation Lookaside Buffers (TLBs) may not contain the address

translations for the process’s virtual memory address space.
• The CPU pipeline is reloaded.
• The VMM may have paged-out memory required by the process.

High context switching results in reduced system throughput. A larger
timeslice can reduce context switching. It can also make the system less
responsive.

Example:

schedtune -t 2

Set the timeslice to 2 clock ticks (20ms). The default timeslice is one clock
tick (10ms).

11.4 Managing Input/Output Resources

The disk subsystem is a critical I/O sub-system component. The
configuration, file system, and file layout can make the difference between
acceptable or unacceptable performance.

11.4.1 Monitoring I/O Using iostat
We used this command in 11.3.5, “Monitoring the CPU with iostat” on page
174 to determine the effect of I/O operations on CPU utilization.

Use iostat as a first step in investigating I/O performance problems. The first
line on an iostat report is the I/O statistics since the system was started.

Example:

In Figure 58 on page 180, the disks hdisk9 and hdisk10 have the highest
load. The disk hdisk9 has a 20 percent higher load than hdisk10.
IBM Performance Tools 179

The other drives share the remaining load evenly.

Moving load from hdisk10 or hdisk9 would provide a more balanced system
and increase overall performance.

The high level of I/O wait on our system may also be reduced if the disks are
more evenly balanced.

Figure 58. I/O Statistics since Boot Using iostat

11.4.2 Monitoring I/O Using lslv
This command displays the placement of logical volumes on physical
partitions.

If the system has significant I/O dependencies, investigate the placement of
files.

AIX storage allocation strategy divides a disk into 5 regions:

• Outer Edge
• Outer Middle
• Center
• Inner Middle
• Inner Edge

A logical volume can span several regions and can be placed across multiple
disks. Avoid situations were logical volumes are fragmented across disk
regions.

iostat 1 1
tty: tin tout avg-cpu: % user % sys % idle % iowait

3.3 738.1 15.4 8.8 55.6 20.3

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2 0.0 0.0 0.0 1052 0
hdisk0 5.0 39.7 6.0 1767844 2849263
hdisk1 4.9 47.4 5.8 1804877 3702047
hdisk3 3.8 17.3 3.0 1018922 997348
hdisk4 5.1 19.2 4.1 614302 1618864
hdisk5 6.8 35.7 6.5 1604006 2548204
hdisk6 8.4 31.5 6.7 1677430 1984584
hdisk7 0.0 0.0 0.0 2148 0
hdisk8 6.5 32.9 7.2 1287490 2542280
hdisk9 11.6 310.5 20.6 22447138 13663752
hdisk10 8.1 266.2 16.4 21835730 9119258
cd0 0.1 0.0 0.0 164 0
180 RS/6000 SP System Performance Tuning

By spreading a logical volume across multiple disks, performance gains are
achieved when:

• Several requests for files in the logical volume are issued.
• The files reside on different disks.

File placement should be carefully managed.

Example:

Figure 59 is an example of a logical volume that has been split into two blocks
on a single physical disk.

Figure 59. Logical Volume on Disk Sample

Analysis of this report:

The first part of the logical volume is in the inner region.

The last part is in the outer edge region.

A process using this volume would experience additional I/O waits when
the disk heads move back and forth between these regions.

Conclusion: Access is not optimal.

11.4.3 Monitoring I/O Using fileplace
This command displays information about the placement of files in a logical
volume. It should be used on files that are heavily accessed.

lslv -p hdisk1 lv11
hdisk1:lv11:/files/app
0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 1-10
0045 0046 0047 0048 0049 0050 0051 11-17

USED USED USED USED USED USED USED USED USED USED 18-27
USED USED USED USED USED USED USED 28-34

USED USED USED USED USED USED USED USED USED USED 35-44
USED USED USED USED USED USED USED 45-50

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 51-60
0011 0012 0013 0014 0015 0016 0017 61-67

0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 68-77
0028 0029 0030 0031 0032 0033 0034 78-84
IBM Performance Tools 181

A file spread across a logical volume is not efficient when the volume is split
across disk regions. If the logical volume is spread across multiple disks, the
file placement is important. A large file heavily accessed and spread across
multiple disks is more efficient to access.

Example:

Figure 60 is an example of using fileplace to view the placement of a file in
a logical volume.

Figure 60. File Placement within a Logical Volume

To assess the performance effect of this file fragmentation, an understanding
of how the file is used by the application is required:

• If the application is primarily accessing this file sequentially, the logical
fragmentation is more important. At the end of each fragment, read ahead
stops. The fragment size is therefore very important.

This command does not display the file placement of a remote file (a
Network File System). You must run the fileplace command directly on
the file server.

Note

fileplace -piv /config/config.app

File: config.app Size: 1015808 bytes Vol: /dev/lv31
Blk Size: 4096 Frag Size: 4096 Nfrags: 248 Compress: no
Inode: 782961 Mode: -rw-rw---- Owner: appadmin Group: app

INDIRECT BLOCK: 254629

Physical Addresses (mirror copy 1) Logical Fragment
---------------------------------- ----------------
0255291-0255302 hdisk3 12 frags 49152 Bytes, 4.8% 1071899-1071910
0255309-0255332 hdisk3 24 frags 98304 Bytes, 9.7% 1071917-1071940
0255338-0255365 hdisk3 28 frags 114688 Bytes, 11.3% 1071946-1071973
0255373-0255380 hdisk3 8 frags 32768 Bytes, 3.2% 1071981-1071988
0255386-0255453 hdisk3 68 frags 278528 Bytes, 27.4% 1071994-1072061
0255464-0255479 hdisk3 16 frags 65536 Bytes, 6.5% 1072072-1072087
0255485-0255520 hdisk3 36 frags 147456 Bytes, 14.5% 1072093-1072128
0255527-0255554 hdisk3 28 frags 114688 Bytes, 11.3% 1072135-1072162
0255562-0255589 hdisk3 28 frags 114688 Bytes, 11.3% 1072170-1072197

248 frags over space of 299 frags: space efficiency = 82.9%
9 fragments out of 248 possible: sequentiality = 96.8%
182 RS/6000 SP System Performance Tuning

• If the application is accessing this file randomly, the physical
fragmentation is more important. The closer the information is in the file,
the less latency there is when accessing.

This file is efficient (but not optimal) when accessed sequentially or randomly.
The fragments are large and close to each other.

11.4.4 Monitoring I/O Using filemon
This command reports I/O activity.

Detailed information on the disk activity and the VMM usage of the page area
is provided. The report shows the most active segments (files) and the most
active volumes (both physical and logical).

This information is used to evaluate whether the placement of files and logical
volumes is appropriate. It can also be used to determine the optimal locations
of files and logical volumes.

Example:

As an example, on a lightly loaded system, we copied a small file to /dev/null.
During the copy, we used filemon to monitor the system I/O activity.

Figure 61 shows the procedure we used to produce the filemon report.

Figure 61. Using filemon

filemon ; cp dummy_file /dev/null ; trcstop

Tue Sep 29 15:43:09 1998
System: AIX sp3en0 Node: 4 Machine: 000081007000

1.781 secs in measured interval
Cpu utilization: 6.1%

When investigating I/O activity using filemon , monitor the I/O activity of the
system without adding an additional dummy load.

Note
IBM Performance Tools 183

11.4.4.1 Identification of the Most Active Files
The Most Active Segments report produced by filemon shows the most
active segments. Use this report to determine files that should be separated.

In Figure 62, the most active segment was on logical volume hd2; the inode is
13.

Figure 62. Identifying the Most Active Segments Using filemon

To find the name of the file, translate the inode for the volume into a file
name. Figure 63 on page 184 is an example of how to do this. On our system
the most active file was /tmp/dummy_file. This is the file we copied to
/dev/null.

Figure 63. Translating Volume and inode to File Name

We created script fn, shown in Figure 64, to make this process easier. To
translate inode 13 on the logical volume using this script, type fn -v

/dev/hd2 13 .

Most Active Segments
--

#MBs #rpgs #wpgs segid segtype volume:inode
--

0.0 1 0 7ebd persistent /dev/hd2:13

find `df | grep "/dev/hd2 " | cut -c58-132̀ -inum 13 -print >\
/tmp/dummy_file
184 RS/6000 SP System Performance Tuning

Figure 64. Sample Script to Obtain File Name

Script fn has the single option -v. This specifies the logical volume, for
example, fn -v /dev/hd2. If the logical volume is not specified, the logical
volume for your current working directory is used.

Any number of inodes can be specified. Use a space between each inode
address, for example, fn -v /dev/hd2 13 18 27. This example will translate
inodes 13, 18, and 27 into their respective file names on the logical volume
hd2.

11.4.4.2 Identification of the Most Active Logical Volume
The Most Active Logical Volumes report produced by filemon shows the most
active logical volumes.

#!/bin/ksh

HEAD=`df . | head -n1`
VOLUME=`df . | grep -v "${HEAD}" | cut -d' ' -f1`

while getopts v: FLAG
do

case ${FLAG} in
v) VOLUME="${OPTARG}";;
?) echo "Do not understand ${OPTARG}"

exit 2;;
esac

done

shift $((OPTIND -1))

FILEROOT=`df | grep -v "${HEAD}" | grep "${VOLUME} " | cut -c58-132`

if [-z "${FILEROOT}"]; then
echo "${VOLUME} is not mounted."
exit 2

fi

for INODE in $*
do

echo ${INODE} | grep -qx "[0-9]*"
if [$? != 0]; then

echo "${INODE} is not a valid inode"
else

FILENAME=`find ${FILEROOT} -inum ${INODE} -print̀
if [-z "${FILENAME}"]; then

echo "Inode ${INODE} on logical volume ${VOLUME} was not found"
else

echo "Inode ${INDOE} on logical volume ${VOLUME} is ${FILENAME}"
fi

fi
done
IBM Performance Tools 185

In our example, shown in Figure 65, the most active logical volume is also the
most active physical volume.

Figure 65. Identifying the Most Active Logical Volume Using filemon

Values to check:

util : utilization as a percentage
KB/s : average number of kilobytes transferred per second

A high value for either of these two columns indicates a bottleneck.

11.4.4.3 Identification of the Most Active Physical Volume
The Most Active Physical Volumes report produced by filemon shows the
physical volumes that are most active. Often, the most active physical volume
is the one containing the most active file or logical volume.

In Figure 66, /dev/hdisk2 is the most active physical volume.

Figure 66. Identifying the Most Active Physical Volume Using filemon

Values to check:

util : utilization as a percentage
KB/s : average number of kilobytes transferred per second

A high value for either of these two columns indicates a bottle neck.

Most Active Logical Volumes
--

util #rblk #wblk KB/s volume description
--

0.01 8 0 2.2 /dev/hd2 /tmp

Most Active Physical Volumes
--

util #rblk #wblk KB/s volume description
--

0.01 8 0 2.2 /dev/hdisk2 2.0 GB SCSI Disk Drive
186 RS/6000 SP System Performance Tuning

11.4.4.4 Assessment of VMM on the I/O Resources
The performance of the I/O subsystems plays a critical role in system
throughput.

How quickly and efficiently an application can access a file and how efficiently
the VMM can manage the application’s memory requirements is a significant
limiting factor in system throughput.

The Detailed VM Segment Stats report produced by filemon is used to
assess the I/O activity generated by the VMM.

Figure 67 is an example of this report.

Figure 67. Investigating the I/O Performance Effect on VMM

Analysis of this report:

reads : The number of reads (indicates the number of page requests).

read sequences : The number of sequential page reads (indicates the level
of fragmentation in memory).

avg : The length of time on average that I/O operations took (indicates the
page space efficiency).

sdev : Access times with significant variation (indicates the level of disk
competition)

11.4.4.5 Assessment of I/O Utilization in a Logical Volume
In 11.4.4.2, “Identification of the Most Active Logical Volume” on page 185,
the filemon report Most Active Logical Volumes was discussed. That report
was a summary of the I/O activity on logical volumes.

The filemon report Detailed Logical Volume Stats provides a breakdown of
the I/O activity in logical volumes.

Figure 68 shows an example of this report.

--
Detailed VM Segment Stats (4096 byte pages)
--

SEGMENT: 7ebd segtype: persistent volume: /dev/hd2 inode: 25
segment flags:pers
reads:1(0 errs)

read times (msec):avg 19.761 min 19.761 max 19.761 sdev 0.000
read sequences: 1
read seq. lengths:avg 1.0 min 1 max 1 sdev 0.0
IBM Performance Tools 187

Figure 68. Investigating the I/O Performance of Logical Volumes

Analysis of this report:

utilization : A low utilization indicates free capacity for higher volumes of
data transfers.

avg : The average access time is an indication of efficiency.

sdev : Variation in access times indicates the level of fragmentation.

11.4.4.6 Assessment of I/O Utilization within a Physical Volume
In 11.4.4.3, “Identification of the Most Active Physical Volume” on page 186,
the filemon report Most Active Physical Volumes was discussed. This report
displayed a summary of the I/O activity for physical volumes.

The Detailed Physical Volume Stats report that filemon produces provides a
breakdown of the I/O activity on the physical volumes.

Figure 69 on page 189 is an example of the Detailed Physical Volume Stats
filemon report.

--
Detailed Logical Volume Stats (512 byte blocks)
--

VOLUME: /dev/hd2 description: /usr
reads:1(0 errs)

read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec):avg 19.729 min 19.729 max 19.729 sdev 0.000
read sequences: 1
read seq. lengths:avg 8.0 min 8 max 8 sdev 0.0

seeks:1(100.0%)
seek dist (blks):init 398944

time to next req(msec): avg 1737.330 min 1737.330 max 1737.330 sdev 0.000
throughput:2.2 KB/sec
utilizatio n:0.01
188 RS/6000 SP System Performance Tuning

Figure 69. Investigating the I/O Performance of Physical Volumes

Analysis of this report:

utilization : A low utilization indicates free capacity for higher volumes of
data transfer.

avg : The average access time is an indication of efficiency.

sdev : Variation in access times indicates the level of fragmentation.

11.4.5 Managing Fragmentation
The following sections describe how to manage fragmentation.

11.4.5.1 Managing File System Fragmentation Using defragfs
The command defragfs is used to reduce file system fragmentation.

File system fragmentation is reduced by reorganizing the file allocations
contiguously. It occurs when disk blocks are allocated and deallocated by
applications.

To check if a file system is fragmented and would benefit from being
defragmented (a process that, on large partitions, will take considerable time
and resources), use defragfs -q .

Example:

Figure 70 on page 190 is a sample defragfs report showing the level of
fragmentation in a file system.

--
Detailed Physical Volume Stats (512 byte blocks)
--

VOLUME: /dev/hdisk2 description: 2.0 GB SCSI Disk Drive
reads:1(0 errs)

read sizes (blks): avg 8.0 min 8 max 8 sdev 0.0
read times (msec):avg 19.623 min 19.623 max 19.623 sdev 0.000
read sequences: 1
read seq. lengths:avg 8.0 min 8 max 8 sdev 0.0

seeks:1(100.0%)
seek dist (blks):init 2271072
seek dist (%tot blks):init 57.74342

time to next req(msec): avg 1737.371 min 1737.371 max 1737.371 sdev 0.000
throughput:2.2 KB/sec
utilizatio n:0.01
IBM Performance Tools 189

Figure 70. Querying State of Fragmentation within a File System

Check the following values:

• Number of free spaces shorter than a block

• Number of free fragments

If the number of free spaces shorter than a block is high or close to the
number of free fragments , use defragfs to consolidate the free space.

Example:

defragfs /dev/hd2

This will defragment and consolidate the free space on logical volume hd2.

11.4.5.2 Managing Volume Group Fragmentation
The command reorgvg is used to move the placement of logical volumes in
physical volumes.

If a logical volume is fragmented across a physical volume (refer to 11.4.2,
“Monitoring I/O Using lslv” on page 180 for information on checking the
placement of logical volumes), reorganize the logical volume.

Example:

reorgvg appvg lv11 lv12

Reorganize the placement of logical volumes lv11 and lv12 in the volume
group appvg .

defragfs -q /dev/hd2
statistics before running defragfs:
number of free fragments 116123
number of allocated fragments 14949
number of free spaces shorter than a block 1
number of free fragments in short free spaces 2
190 RS/6000 SP System Performance Tuning

11.4.5.3 Rebuilding a File System
Rebuild file systems that are heavily fragmented to increase their efficiency.

Scenario:

The file system /appdata is heavily fragmented. This file system is contained
on logical volume lv31.

The following steps are performed to rebuild the file system:

1. Back up the file system.
2. Verify the backup.
3. Unmount the file system; in our case, use unmount /appdata.

4. Remake the file system using mkfs; in our case, use mkfs /dev/lv31. This
is destructive, and you are asked to verify that you actually want to do this.

5. Remount the file system; in our case, use mount /dev/lv31 /appdata.
6. Restore the backup.

11.4.6 Tuning Kernel I/O Parameters
Kernel parameters can be changed to improve I/O throughput. Before tuning
any kernel parameters, the workload I/O requirements must be determined.

Tuning kernel I/O parameters is a process of trading off the efficiency of one
form of access off against that of another.

Place changes made with vmtune into /tftpboot/tuning.cust. This ensures
that, when the system is rebooted, the changes will remain in effect.

11.4.6.1 Tuning Sequential Read Ahead Using vmtune
If the VMM determines that sequential access to a file is being made, it
schedules additional reads (read ahead). Read ahead is used to retrieve file
blocks before they are required.

AIX has two kernel parameters that the VMM uses to determine when read
ahead should happen and how many blocks are to be read ahead.

The kernel parameter minpgahead sets the number of sequential file blocks
that must be sequentially read by an application before read ahead will begin.

In the examples given, we have set the system parameters to the
recommended default values for our installation of AIX 4.3.2.0.

Note
IBM Performance Tools 191

This parameter also sets the number of blocks that are to be read ahead
initially.

The kernel parameter maxpgahead sets the maximum number of file blocks
that are read ahead on behalf of the application.

Table 26 shows how read ahead works when minpgahead is 2 and
maxpgahead is 8.

Table 26. Tuning Read Ahead

The processes shown in Table 26 work as follows:

1. An application accesses the first file block.

2. The next file block is read by the application (file block 2). The number of
file blocks accessed in sequence equals minpgahead. Two additional
blocks are read ahead.

3. The application continues to read file blocks sequentially. File block 3 is
the last file block read ahead. When accessed, four additional file blocks
are read ahead.

4. File blocks continue to be accessed sequentially. File block 8 is the last file
block read ahead. When accessed, eight additional file blocks are read
ahead. Eight is the maximum number to read ahead (value of
maxpgahead).

5. As the file access continues sequentially, accessing the last block read
ahead schedules an additional eight blocks for read ahead.

6. The file is accessed out of sequence. Read ahead is canceled.

Step File Access Read Ahead

1 1st file block No blocks read ahead

2 2nd file block Blocks 3 - 4 read ahead

3 4th file block Blocks 5 - 8 read

4 8th file block Blocks 9 - 16 read

5 16th file block Blocks 17 - 24 read

6 Out-of-sequence file block Read ahead canceled
192 RS/6000 SP System Performance Tuning

11.4.6.2 Using I/O Pacing
Some processes generate output very quickly and in large quantities. This
can cause large backlogs in the number of pending I/O operations.

A large backlog of work in the I/O subsystem will delay processes that have
to wait on an I/O operation.

I/O pacing is an option that will limit the number of pending I/O requests
against a file or segment. When the number of pending writes for a file
exceeds this point, the process is suspended until the level of outstanding I/O
requests is reduced.

I/O pacing penalizes processes that rapidly issue I/O write requests in favor
of other less I/O-demanding processes.

The kernel parameters maxpout and minpout configure I/O pacing:

maxpout Sets the maximum number of I/O write requests that are allowed
against a single file.

minpout Sets the number of I/O requests against a single file before the
issuing processes are resumed.

• The values of minpgahead and maxpgahead should always be powers
of two, and the maxpgahead value must be greater than or equal to the
minpgahead value.

• If the minpgahead value is set to 0, sequential read ahead will not be
instigated by the VMM.

Example:

vmtune -r 2 -R 8

Set minpgreadahead to 2, and maxpgahead to 8. Read ahead begins when
a second file block is accessed sequentially. A maximum of eight file blocks
at a time are read ahead.

Note

Setting minpout and maxpout to 0 disables I/O pacing.

Example:

chdev -l sys0 -a maxpout='33' -a minpout='16'

Note
IBM Performance Tools 193

Set the maximum number of pending I/O write requests outstanding against a
file to 33 before suspending the process.

Once the process is suspended, it will not be resumed until the outstanding
I/O write requests against the file drop to 16.

11.4.6.3 Tuning Asynchronous Disk I/O
The AIX kernel uses a kernel process (kproc) to manage Asynchronous I/O.
Every Asynchronous I/O operation requires a kproc to manage the request.
The number of kprocs determines the number of Asynchronous I/O
operations that can be performed together.

If there are two kprocs, only two Asynchronous I/O operations can be
performed together.

The number of kproc servers is set with the kernel parameters minservers
and maxservers:

minservers : The number of kprocs to start when the system is booted.

maxservers : The maximum number of kprocs the kernel can have running
at any one point in time. This limits the maximum number of
asynchronous I/O operations.

Example:

chdev -l aio0 -a minservers=’10’ -a maxservers=’20’

This sets the minimum number of kprocs to 10, and the maximum number of
kprocs to 20.

11.5 Managing Network Resources

The network in an RS/6000 SP forms the complex. Without it, the RS/6000
SP would be a set of individual nodes operating independently.

Network communication is a combination of hardware and complex software.

It is important that network parameters be set appropriately. The switch, for
example, is capable of shifting 120+ MB of data per second. With incorrect
configuration, the switch throughput may only be a few hundred kilobytes.

For applications with high Asynchronous I/O requirements, set maxservers
to 10 times the number of drives, and set minservers to half this value.

Note
194 RS/6000 SP System Performance Tuning

The importance of network tuning depends on how the RS/6000 SP complex
is configured:

• If the RS/6000 SP complex is used as a convenient way to administer a
large number of disparate computer systems, network tuning is of limited
value.

• If there is tight coupling between nodes, and the work load is divided
across the nodes, the network is a critical component.

The network is one of the slowest components in a complex. In any
RS/6000 SP complex with tight coupling between the nodes, investigation
of the network is a high priority.

11.5.1 Monitoring the Network Using Adapter Statistics
Most network adapters have stat commands which list the device driver
statistics.

The following stat commands can be used with each of the specified
adapters to obtain the device driver statistics:

entstat : Ethernet adapter (ent0..n)

tokstat : Token ring adapter (tr0..n)

fddistat : Fiberoptic Distributed Data Interface (FDDI) adapter (fddi0..n)

atmstat : Asynchronous Transfer Mode (ATM) adapter (atm0..n)

estat : RS/6000 SP switch (css0..n)

An estimate of adapter utilization is calculated from the bytes sent and
received.

Using estat css0 on our system (shown in Figure 71 on page 196) we can
calculate that 0.8 MB per hour of bandwidth is used: (bytes sent + bytes
received) / elapsed time.

The S/W Transmit Queue Overflow value should also be checked. Transmit
queue overflows (flooding) cause delays in network traffic on the adapter.
IBM Performance Tools 195

Figure 71. Network Adapter Statistics

The adapter statistics are reset using the estat -r option. For example,
estat -r css0 resets the device driver statistics for the network adapter css0 .

Determining utilization using device driver statistics requires knowledge of
each adapter’s rated bandwidth, the protocol used, and how it is used.

Examples:

• In most environments Ethernet adapters driven above 25 percent to 30
percent will result in serious degradation of the network link. Degradation
of the network link is often seen with 10 percent loading.

A good indicator of an overloaded network is:
Collisions / Transmit Packets > 0.1

• If you have an application that transfers large volumes of data on a
dedicated link between two hosts in a single direction, the transfer rates
could exceed 80 percent of the theoretical maximum transfer when tuned
correctly.

/usr/lpp/ssp/css/estat css0

CSS STATISTICS (css0) :
Elapsed Time: 35 days 5 hours 5 minutes 25 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 3352220 Packets: 3341258
Bytes: 347889708 Bytes: 395510912
Interrupts: 0 Interrupts: 3070419
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 0 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 0 Broadcast Packets: 0

General Statistics:

No mbuf Errors: 0
196 RS/6000 SP System Performance Tuning

• Using ATM, 50 percent to 60 percent of the theoretical transfer rate can be
achieved on an Ethernet adapter before serious degradation of the
network is seen.

• A token ring will achieve 60 percent to 70 percent of the theoretical
transfer rate before the network link becomes significantly degraded.

• In lab testing of the RS/6000 SP Switch, transfer rates exceeding 120 MB
per second have been achieved. The Global Parallel File System (GPFS)
for the RS/6000 SP can get very close to these transfer rates when the
switch is dedicated to GPFS use and the link is tuned correctly.

11.5.2 Monitoring the Switch with vdidl2 or vdidl3
The commands vdidl2 and vdidl3 provide switch memory pool statistics.

Which command to use depends on the type of switch. For the HiPS switch,
use vdidl2, and, on the SP Switch, use vdidl3.

Figure 72 on page 198 is an example of the report produced using vdidl3.
IBM Performance Tools 197

Figure 72. Switch Pool Statistics Using vdidl3

Interpretation of the report:

The values that should be considered are the success , fail , and split

columns. Interpretation of these values is as follows:

• Allocation of switch pool memory is in request blocks. A block size is
always 2^blk . For example, in the row were column blk is 12, the block
allocation size is 2^12=4K.

• The column success shows the number of successful attempts to allocate
a requested memory block.

/usr/lpp/ssp/css/vdidl3 -i
get ifbp info...

send pool: size=2097152 anchor@=0x50002e00 start@=0x51210000
tags@=0x50004000
bkt allocd free success fail split comb freed

12 0 0 12866 0 25655 0 0
13 0 0 3 0 12 0 0
14 0 0 25683 0 25684 0 0
15 0 0 0 0 0 0 0
16 0 32 47 0 0 0 0

rsvd pool: size=262144 anchor@=0x510d4200 start@=0x51410000
tags@=0x50003d00
bkt allocd free success fail split comb freed

12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 4 0 0 0 0 0

recv pool: size=2097152 anchor@=0x50002000 start@=0x51450000
tags@=0x510d3400
bkt allocd free success fail split comb freed

12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0
198 RS/6000 SP System Performance Tuning

• The column fail shows the number of failed attempts to allocate a
requested contiguous memory block.

• The column split shows the number of times a block could not be
allocated contiguously in the memory pool and was allocated as
fragmented memory blocks.

• The number of memory block allocation failures is fails - split.

As the switch begins to reach the transfer limit, the switch pools become
fragmented, and the switch begins to fail requests for memory block
allocations.

The SP switch receive pool (recv pool) statistics are no loner updated. The
receive pool is now implemented in the switch using microcode on the
adapter.

11.5.3 Monitoring the Network with netstat
This command is used to assess the network load and the reliability of the
network. It is traditionally used for problem determination. We have found this
command to be useful for determining the network load, and whether the
network is congested.

11.5.3.1 Determine the Proportion of Network Traffic for an Adapter
Use netstat -I to compare the network traffic on a selected adapter with the
total volume of network traffic.

Figure 73 is an example of a netstat -I report. This report was produced
while a large file was transferred using ftp (a file transfer application)
between two nodes. The high-speed switch css0 was chosen to do this
transfer.

Figure 73. Viewing the Network Load Using netstat

netstat -I css0 1
input (css0) output input (Total) output

packets errs packets errs colls packets errs packets errs colls
125696 0 110803 0 0 356878 0 287880 0 0

119 0 216 0 0 123 0 221 0 0
117 0 222 0 0 120 0 224 0 0
115 0 225 0 0 117 0 227 0 0
115 0 202 0 0 117 0 204 0 0
115 0 207 0 0 117 0 209 0 0
116 0 201 0 0 118 0 203 0 0
115 0 211 0 0 118 0 213 0 0
IBM Performance Tools 199

The report is divided into five columns for the adapter, and five columns for
the total network utilization:

1. Incoming packets.
2. Number of error packets received. An error causes a retransmission of the

packet.
3. Number of packets sent.
4. Number of error packets sent (the number of packets which were

re-requested because of a transmission error).
5. Number of collisions (colls). When information is sent using a network

adapter, a component of Transmission Control Protocol (TCP) is a
collision detection algorithm. The algorithm works as follows:
1. Before sending, check that the network connection is not in use.
2. When the network connection is free, begin writing the packet onto the

network.
3. Check that in the very short amount of time between determining that

the network connection was free and beginning to write the packet, no
other network adapter started to write a packet. When this happens, it
is called a network collision.

4. The adapters abort the write operation.
5. The adapters wait for a random period of time before trying again.

Collisions affect network throughput: the adapters involved are forced to
spend time waiting, and network bandwidth is wasted when the collision
occurs.

A few collisions will happen in a network from time to time and are
acceptable. If a lot of collisions are detected, it indicates the network is
overloaded.

11.5.3.2 Determining an Adapter’s Packet Size
Use netstat -i to find the Maximum Transmission Unit (MTU) size of each
network adapter and the number of packets each adapter has received or
sent.

In Figure 74 on page 201, the adapter css0 has an MTU size of 65520
bytes. Figure 73 on page 199 shows that 115 packets were received and 205

• Adapters involved in a network collision can be in the same host or in
different hosts.

• Packet numbers do not directly translate into network utilization,
because packet sizes vary. Packet numbers are only a guide to network
load.

Note
200 RS/6000 SP System Performance Tuning

packets were sent on average. If each packet fully utilized the MTU, a transfer
rate of 20 MB per second would have been achieved. In our example, using
ftp, we averaged under 4 MB per second.

Using a single channel of the switch, with optimal packaging, the SP Switch
we were using can transfer 30 MB per second.

Figure 74. Using netstat to Find MTU Size

11.5.3.3 Network Memory Buffer Allocation Statistics
If memory buffer allocation requests fail, the request is lost and more memory
needs to be allocated to the network memory pool. For an explanation on how
to do this, refer to 11.5.7.1, “Setting Upper Memory Bound for
Communications” on page 216.

Figure 75 on page 202 is an example of using netstat -m to check the
network memory buffer allocation statistics. Check the column failed to
ensure that the communication subsystem has sufficient memory allocated.

Be careful when interpreting figures which are not rigidly and precisely
defined. Packets are good examples of values that can only be interpreted
in conjunction with other values.

Note

netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 15509 0 15519 0 0
lo0 16896 127 loopback 15509 0 15519 0 0
lo0 16896 ::1 15509 0 15519 0 0
en0 1500 link#2 2.60.8c.e8.fc.b3 19362 0 15659 0 0
en0 1500 192.168.5 sp5n13.msc.itso.i 19362 0 15659 0 0
css0 65520 link#3 57230 0 85174 0 0
css0 65520 192.168.15 sp5sw13.msc.itso. 57230 0 85174 0 0
IBM Performance Tools 201

Figure 75. Network Memory Buffer Allocation Statistics

11.5.3.4 Network Connections
Use netstat -d to determine:

• The number of network connections
• The network protocol used for each connection
• The application using the network connection
• The process assigned the network connection
• The host or client with which the network connection has been made

Figure 76 on page 203 shows an example of using netstat -d to list the
currently open network connections (we reduced the size of this list). In this
example, most network connections are established with TOT39.

netstat -m

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed free hiwat freed
32 269 150117 0 115 640 0
64 159 1367 0 33 320 0
128 108 2213 0 148 160 5
256 260 6736146 0 380 384 13
512 186 614975 0 38 40 5
1024 68 98827 0 68 100 0
2048 0 132368 0 34 100 0
4096 19 33252 0 37 120 0
8192 0 1495 0 0 10 0
16384 1 25004 0 20 24 145
32768 1 1 0 0 512 0

By type inuse calls failed memuse memmax mapb

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures
202 RS/6000 SP System Performance Tuning

Figure 76. Network Connections

11.5.4 Monitoring Network Traffic Using iptrace
This command monitors all network traffic on the host system. It is used to
identify network problems. This is not a tool that will be used routinely.
iptrace degrades system performance because it collects substantial
amounts of data for analysis. Each packet sent or received is captured.

Figure 77 is an example of the procedure to run ipctrace . To illustrate the use
of iptrace we used it on an unloaded node, and used echo to write a line of
text to a Network File System (NFS). We then stopped ipctrace and
formatted the report using ipreport .

Figure 77. Running iptrace

The report produced contained a number of transmissions; both send and
receive network operations were captured.

netstat -d
Active Internet connections
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 0 sp4cw0.msc.itso..33664 TOT39.itso.ibm.c.6000 ESTABLISHED
tcp4 0 0 sp4cw0.msc.itso..telne TOT104.itso.ibm..3529 ESTABLISHED
tcp4 0 0 sp4cw0.msc.itso..33635 TOT39.itso.ibm.c.6000 ESTABLISHED
tcp4 0 0 sp4en0.msc.itso..sdr sp4en0.msc.itso..33285 ESTABLISHED
tcp4 0 0 sp4en0.msc.itso..33285 sp4en0.msc.itso..sdr ESTABLISHED
tcp4 0 0 sp4en0.msc.itso..sdr *.* LISTEN
tcp4 0 0 sp4cw0.msc.itso..33102 TOT39.itso.ibm.c.6000 ESTABLISHED
tcp4 0 0 sp4cw0.msc.itso..33098 TOT39.itso.ibm.c.6000 ESTABLISHED
tcp4 0 0 sp4cw0.msc.itso..33097 TOT39.itso.ibm.c.6000 ESTABLISHED
tcp4 0 0 sp4cw0.msc.itso..33095 TOT39.itso.ibm.c.6000 ESTABLISHED
tcp4 0 0 sp4cw0.msc.itso..33090 TOT39.itso.ibm.c.6000 ESTABLISHED
tcp4 0 0 sp4en0.msc.itso..hardm sp4en0.msc.itso..33085 ESTABLISHED
tcp4 0 0 sp4en0.msc.itso..33085 sp4en0.msc.itso..hardm ESTABLISHED
tcp4 0 0 sp4en0.msc.itso..17661 *.* LISTEN
tcp4 0 0 sp4en0.msc.itso..33064 sp4en0.msc.itso..sdr CLOSE_WAIT
tcp4 0 0 sp4en0.msc.itso..haemd *.* LISTEN
tcp4 0 0 sp4en0.msc.itso..hardm sp4en0.msc.itso..32837 ESTABLISHED
tcp4 0 0 sp4en0.msc.itso..32837 sp4en0.msc.itso..hardm ESTABLISHED

startsrc -s iptrace -a "-i css0 /tmp/iptrace_log"
0513-059 The iptrace Subsystem has been started. Subsystem PID is 12984.
echo " Network Traffic \n" >> /network_drive/test_data
stopsrc -s iptrace
0513-044 The stop of the iptrace Subsystem was completed successfully.
ipreport /tmp/ipctrace_log > /tmp/iptrace_report
pg /tmp/iptrace_report
IBM Performance Tools 203

The first packet of information reported by ipctrace is shown in Figure 78.
From this report, we can determine that the packet was destined for sp5sw05
and contained 188 bytes.

Figure 78. First Transmission Block Captured Using iptrace

Figure 79 on page 205 shows the return packet received from sp5n05 in
response.

IPTRACE version: 2.0

TRACING DROPPED 1457 PACKETS after packet 0. TOTAL DROPPED THIS TRACE=1457

====(188 bytes transmitted on interface css0)==== 14:21:39.320966239
OTHER packet (IP)
IP header breakdown:

< SRC = 192.168.15.13 > (sp5sw13.msc.itso.ibm.com)
< DST = 192.168.15.5 > (sp5sw05.msc.itso.ibm.com)
ip_v=4, ip_hl=20, ip_tos=0, ip_len=188, ip_id=19439, ip_off=0
ip_ttl=60, ip_sum=92ea, ip_p = 6 (TCP)

TCP header breakdown:
<source port=33023, destination port=2049(shilp) >
th_seq=b34e1e2c, th_ack=e4ee7e09
th_off=8, flags<PUSH | ACK>
th_win=38886, th_sum=6907, th_urp=0

00000000 0101080a 36153fd8 36154042 80000084 |....6.?.6.@B....|
00000010 1525f276 00000000 00000002 000186a3 |.%.v............|
00000020 00000003 00000001 00000001 00000038 |...............8|
00000030 361519b3 00000006 7370356e 31330f0d |6.......sp5n13..|
00000040 00000000 00000000 00000007 00000000 |................|
00000050 00000002 00000003 00000007 00000008 |................|
00000060 0000000a 0000000b 00000000 00000000 |................|
00000070 00000020 000a000a 00000003 000a0000 |...|
00000080 00143614 df980000 000a0000 00023613 |..6...........6.|
00000090 97e10000 |.... |
204 RS/6000 SP System Performance Tuning

Figure 79. First Received Block Captured Using iptrace

This tool is very useful when troubleshooting a network problem because
both sides of the network conversation can be seen.

The ipctrace command is used to verify network tuning. For example, after
increasing the MTU size, it is possible to determine whether the applications
took advantage of this change by looking at the network transmissions.

11.5.5 Monitoring the Network Using netpmon
This command monitors and then reports the network activity. It provides
reports that are used to determine the level of network utilization.

Several reports summarize the network activity. For each summary report, a
detailed report is also produced.

This command utilizes the system trace facility to obtain the network
statistics. Running this command consumes system resources and generates
a large volume of information in memory. We do not recommend running this
program routinely or for long periods of time.

We recommend that this command be used to take a snapshot of the network
during a short period of time when there is a network performance problem.

Example:

====(168 bytes received on interface css0)==== 14:21:39.321888532
OTHER packet (IP)
IP header breakdown:

< SRC = 192.168.15.5 > (sp5sw05.msc.itso.ibm.com)
< DST = 192.168.15.13 > (sp5sw13.msc.itso.ibm.com)
ip_v=4, ip_hl=20, ip_tos=0, ip_len=168, ip_id=27499, ip_off=0
ip_ttl=60, ip_sum=7382, ip_p = 6 (TCP)

TCP header breakdown:
<source port=2049(shilp), destination port=33023 >

th_seq=e4ee7e09, th_ack=b34e1eb4
th_off=8, flags<PUSH | ACK>
th_win=30016, th_sum=b09e, th_urp=0

00000000 0101080a 36154042 36153fd8 80000070 |....6.@B6.?....p|
00000010 1525f276 00000001 00000000 00000000 |.%.v............|
00000020 00000000 00000000 00000000 00000001 |................|
00000030 000001ff 00000001 00000000 00000003 |................|
00000040 00000000 0000009a 00000000 00001000 |................|
00000050 00000000 0000000c 00000000 000a000a |................|
00000060 00000000 00000014 3615188a 255fdb09 |........6...%_..|
00000070 3614e394 025d5ad6 3614e484 0ab780aa |6....]Z.6.......|
IBM Performance Tools 205

Using an unloaded node, we monitored the network traffic with netpmon .
Figure 80 shows the procedure used.

Figure 80. Using netpmon

In our example, one node is an NFS server (sp5n05), and one node is an
NFS client (sp5n13).

The sample netpmon reports which follow are a mix taken from these nodes.
When presenting a sample netpmon report of network traffic, the report is from
the client node. When presenting a sample netpmon report of NFS activity, the
report is from the server node.

11.5.5.1 Identification of Network CPU Utilization by Processes
The Process CPU Usage Statistics report produced by netpmon shows the
effect processes using the network services have on CPU utilization.

Figure 81 on page 207 is an example of the Process CPU Usage Statistics
report, which displays the 20 most active processes utilizing the CPU. The
report also displays the CPU utilization for network services for each of these
processes.

Applications with high CPU utilization for network services are applications
network tuning should be biased toward.

netpmon -o /tmp/netmon_report

Enter the "trcstop" command to complete netpmon processing

trcstop
[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 112.168 secs in measured interval]
206 RS/6000 SP System Performance Tuning

Figure 81. CPU Network Utilization by Processes

In this example, NFS was the highest user of the network services (kbiod -
Kernel Block Input/Output Daemon).

11.5.5.2 Identification of Network CPU Utilization by Interrupts
When the CPU is working and a device request or exception occurs, an
interrupt is generated. The CPU saves the current task information and then
vectors to a First Level Interrupt Handler (FLIH).

The FLIH routes the interrupt to a Second Level Interrupt Handler (SLIH).

The First Level Interrupt Handler CPU Usage Statistics report that netpmon

produces shows the amount of CPU time spent in the FLIHs.

Figure 82 on page 208 shows an example of this report.

Process CPU Usage Statistics:

Network
Process (top 20) PID CPU Time CPU % CPU %
--
kbiod 7756 11.4033 0.765 0.708
ftp 13634 9.4786 0.636 0.240
netpmon 10236 4.5108 0.303 0.000
cat 13628 4.2828 0.287 0.001
gil 3096 3.6692 0.246 0.246
cp 12836 3.0610 0.205 0.000
trace 15048 1.8723 0.126 0.000
hatsd 17602 1.5320 0.103 0.000
syncd 4936 0.5629 0.038 0.000
ksh 12226 0.1209 0.008 0.000
ls 13630 0.1090 0.007 0.000
netm 2838 0.0864 0.006 0.006
swapper 0 0.0845 0.006 0.000
xntpd 10330 0.0564 0.004 0.000
ping 13632 0.0350 0.002 0.000
harmld 17398 0.0257 0.002 0.000
ls 13626 0.0208 0.001 0.000
hagsd 16258 0.0189 0.001 0.000
trcstop 13636 0.0175 0.001 0.000
init 1 0.0109 0.001 0.000
--
Total (all processes) 40.9961 2.750 1.201
Idle time 1431.5116 96.027
IBM Performance Tools 207

Figure 82. CPU Network Utilization by FLIH

The FLIHs are very fast and consume very little CPU time. Most of the
interrupt handling is performed in the SLIH.

The Second Level Interrupt Handler CPU Usage Statistics report that
netpmon produces shows the amount of CPU time that is spent in the SLIHs.

This report is shown in Figure 83.

Figure 83. CPU Network Utilization by SLIH Summary Report

In our examples, the network interrupt CPU time was consumed by the FLIH
servicing the external device (Figure 82) interrupt.

We used the Second Level Interrupt Handler CPU Usage Statistics report to
determine which device/adapter generated the interrupts. In our example it
was the device driver entdd (the Ethernet adapter device driver). Less than
0.6 percent of the CPU was used by this device driver.

First Level Interrupt Handler CPU Usage Statistics:

Network
FLIH CPU Time CPU % CPU %
--
PPC decrementer 6.9969 0.469 0.000
external device 2.2347 0.150 0.039
data page fault 1.8917 0.127 0.000
UNKNOWN 0.1432 0.010 0.000
instruction page fault 0.0006 0.000 0.000
program check 0.0000 0.000 0.000
--
Total (all FLIHs) 11.2672 0.756 0.039

Second Level Interrupt Handler CPU Usage Statistics:
--

Network
SLIH CPU Time CPU % CPU %
--
entdd 7.9074 0.530 0.530
cssdd3 0.0798 0.005 0.000
ascsiddpin 0.0256 0.002 0.000
ssapin 0.0044 0.000 0.000
--
Total (all SLIHs) 8.0172 0.538 0.530
208 RS/6000 SP System Performance Tuning

The Detailed Second Level Interrupt Handler CPU Usage Statistics report
produced by netpmon displays CPU service time statistics.

Use this report to assess the CPU time of each network interrupt. Use this
assessment to calculate the effect of additional network traffic.

Figure 84 shows an example of the Detailed Second Level Interrupt Handler
CPU Usage Statistics report. It shows that interrupts by the adapter ent0
(entdd) cost on average (avg) 0.018 milliseconds of CPU time.

Figure 84. CPU Network Utilization by SLIH Detailed Report

11.5.5.3 Identification of Network Adapter Utilization
The Network Device-Driver Statistics (by Device) report produced by
netpmon displays data throughput of each network adapter during the time
monitored.

Figure 85 on page 210 shows an example of this report. The only adapter
used was ent0.

Detailed Second Level Interrupt Handler CPU Usage Statistics:

SLIH: entdd
count: 27194

cpu time (msec): avg 0.291 min 0.018 max 2.088 sdev 0.109

SLIH: cssdd3
count: 2150

cpu time (msec): avg 0.037 min 0.021 max 0.393 sdev 0.016

SLIH: ascsiddpin
count: 390

cpu time (msec): avg 0.066 min 0.028 max 0.183 sdev 0.032

SLIH: ssapin
count: 76

cpu time (msec): avg 0.058 min 0.034 max 0.134 sdev 0.019

COMBINED (All SLIHs)
count: 29810

cpu time (msec): avg 0.269 min 0.018 max 2.088 sdev 0.126
IBM Performance Tools 209

Figure 85. Network Adapter Utilization Summary Report

In this example:

• Data throughput is 135 KB per second (Xmit Bytes/s + Recv Bytes/s).

• Average packet size is 981 bytes ((Xmit pkts/s + Recv pkts/s) / (Xmit

Bytes/s + Recv Bytes/s)).

Average packet size is a tuning indicator. Tuning the network by increasing
the MTU size is not effective if applications use small packets.

The Detailed Network Device-Driver Statistics report that netpmon produces
is shown in Figure 86. The report displays CPU service time statistics of
network packets.

Figure 86. Network Adapter Utilization Detailed Report

11.5.5.4 Identification of Outgoing Network Traffic
The Network Device-Driver Transmit Statistics (by Destination Host) report
produced by netpmon displays network transmission to each destination.

Use this report to assess the traffic generated by this host and where
information was sent. Use this information to look for candidate systems on
the network that may be bottlenecks.

In Figure 87 on page 211 the traffic flow is mainly to node 5
(sp5n05.msc.itso.ibm.com).

Network Device-Driver Statistics (by Device):

----------- Xmit ----------- -------- Recv ---------
Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux
--
ethernet 0 91.16 135284 0.0%108.712 50.18 3434 0.8160

Detailed Network Device-Driver Statistics:
--

DEVICE: ethernet 0
recv packets: 9351

recv sizes (bytes): avg 68.4 min 60 max 442 sdev 24.9
recv times (msec): avg 0.018 min 0.011 max 0.103 sdev 0.004
demux times (msec): avg 16.335 min 0.095 max 149429.476 sdev 1548.759

xmit packets: 16987
xmit sizes (bytes): avg 1484.0 min 60 max 1514 sdev 204.3
xmit times (msec): avg 1192.549 min 0.056 max 15717.099 sdev 509.452
210 RS/6000 SP System Performance Tuning

Figure 87. Network Transmission Summary Report

Each host listed in the Network Device-Driver Transmit Statistics (by
Destination Host) report also appears in the Detailed Network Device-Driver
Transmit Statistics (by Host) report which netpmon produces.

Using this report, CPU service times for each packet sent can be determined.

An example of the Detailed Network Device-Driver Transmit Statistics (by
Host) report is shown in Figure 88.

Figure 88. Network Transmission Detailed Report

11.5.5.5 Identification of Network Service Calls
The Socket Call Statistics (by Process) report produced by netpmon is a
breakdown of socket service requests by protocol issues in each process.

Use this report to asses the type of network traffic each application uses.

Figure 89 on page 212 shows an example of the Socket Call Statistics (by
Process) report.

Network Device-Driver Transmit Statistics (by Destination Host):
--

Host Pkts/s Bytes/s
--
sp5n05.msc.itso.ibm.com 90.22 135219
sp5en0.msc.itso.ibm.com 0.94 65

Detailed Network Device-Driver Transmit Statistics (by Host):

HOST: sp5n05.msc.itso.ibm.com
xmit packets: 16811

xmit sizes (bytes): avg 1498.8 min 66 max 1514 sdev 144.8
xmit times (msec): avg 1204.961 min 0.088 max 15717.099 sdev 497.306

HOST: sp5en0.msc.itso.ibm.com
xmit packets: 175

xmit sizes (bytes): avg 69.4 min 60 max 699 sdev 51.9
xmit times (msec): avg 7.084 min 0.056 max 1143.339 sdev 86.336
IBM Performance Tools 211

Figure 89. Network Process Service Calls Summary Report

A Detailed TCP Socket Call Statistics (by Process) report is produced by
netpmon for each process listed in the Socket Call Statistics (by Process)
report.

Use this report to estimate each application’s network CPU requirement.

This report is of most value when calculating an application’s network
resources and the resulting CPU resource requirement.

Figure 90 on page 213 shows an example of the Detailed TCP Socket Call
Statistics (by Process) report.

TCP Socket Call Statistics (by Process):
--

------ Read ----- ----- Write -----
Process (top 20) PID Calls/s Bytes/s Calls/s Bytes/s
--
fault_service_Worm_RTG_SP 16662 0.30 1 0.06 2
SDRGetObjects 19022 0.04 1 0.01 0
SDRGetObjects 19016 0.04 1 0.01 0
--
Total (all processes) 0.37 3 0.07 2

==

ICMP Socket Call Statistics (by Process):

------ Read ----- ----- Write -----
Process (top 20) PID Calls/s Bytes/s Calls/s Bytes/s
--
ping 19026 0.03 6 0.03 2
ping 19024 0.03 5 0.03 2
ping 19020 0.00 0 0.02 1
--
Total (all processes) 0.06 11 0.07 5
212 RS/6000 SP System Performance Tuning

Figure 90. Network Process Service Calls Detailed Report

11.5.5.6 Identification of Network File System Activity
NFS servers usually have very high network traffic. They are often productive
hunting grounds in the search for performance problems especially when
searching for network performance problems.

The NFS Server Statistics (by Client) report produced by netpmon provides
NFS activity statistics for each NFS client.

Use this report to assess the network load of NFS.

Figure 91 on page 214 shows an example of the NFS Server Statistics (by
Client) report, showing NFS activity for the client node sp5n13.

Detailed TCP Socket Call Statistics (by Process):

PROCESS: fault_service_Worm_RTG_SP PID: 16662
reads: 56

read sizes (bytes): avg 2.5 min 1 max 26 sdev 5.6
read times (msec): avg 0.611 min 0.021 max 3.287 sdev 1.110

writes: 12
write sizes (bytes): avg 27.7 min 5 max 64 sdev 21.0
write times (msec): avg 0.200 min 0.180 max 0.266 sdev 0.025

PROCESS: /usr/lpp/ssp/bin/SDRGetObjects PID: 19022
reads: 7

read sizes (bytes): avg 28.9 min 1 max 196 sdev 68.2
read times (msec): avg 0.473 min 0.018 max 3.004 sdev 1.034

writes: 1
write sizes (bytes): avg 23.0 min 23 max 23 sdev 0.0
write times (msec): avg 0.263 min 0.263 max 0.263 sdev 0.000

PROCESS: /usr/lpp/ssp/bin/SDRGetObjects PID: 19016
reads: 7

read sizes (bytes): avg 28.9 min 1 max 196 sdev 68.2
read times (msec): avg 0.447 min 0.018 max 2.855 sdev 0.984

writes: 1
write sizes (bytes): avg 23.0 min 23 max 23 sdev 0.0
write times (msec): avg 0.263 min 0.263 max 0.263 sdev 0.000

PROTOCOL: TCP (All Processes)
reads: 70

read sizes (bytes): avg 7.8 min 1 max 196 sdev 32.7
read times (msec): avg 0.581 min 0.018 max 3.287 sdev 1.093

writes: 14
write sizes (bytes): avg 27.0 min 5 max 64 sdev 19.5
write times (msec): avg 0.209 min 0.180 max 0.266 sdev 0.032
IBM Performance Tools 213

Figure 91. Utilization of Network by NFS Summary Report

Each NFS client listed in the netpmon NFS Server Statistics (by Client)
report is listed in the Detailed NFS Server Statistics (by Client) report, which
provides a breakdown of NFS service times.

Figure 92 is an example of the Detailed NFS Server Statistics (by Client)
report produced by netpmon.

Figure 92. Utilization of Network by NFS Detailed Report

11.5.6 Checking Network Adapter Settings Using lsattr
This command displays adapter settings.

Use it to check the following network adapter settings:

Transmit queue lengths
Maximum Transmission Unit (MTU)
Memory pool sizes

Figure 93 on page 215 shows an example of using lsattr to obtain the
adapter settings for css0.

NFS Server Statistics (by Client):

------ Read ----- ----- Write ----- Other
Client Calls/s Bytes/s Calls/s Bytes/s Calls/s
--
sp5sw13.msc.itso.ibm.com 0.00 0 0.00 0 3.87
--
Total (all clients) 0.00 0 0.00 0 3.87

Detailed NFS Server Statistics (by Client):

CLIENT: sp5sw13.msc.itso.ibm.com
other calls: 732

other times (msec): avg 4.226 min 0.356 max 481.851 sdev 18.283

COMBINED (All Clients)
other calls: 732

other times (msec): avg 4.226 min 0.356 max 481.851 sdev 18.283
214 RS/6000 SP System Performance Tuning

Figure 93. Listing Adapter Attributes with lsattr

11.5.7 Tuning Network Parameters Using no
This command sets the kernel network parameters.

This is the network tuning command that is used most often. Changes remain
active only until the system is rebooted.

Exercise care when setting network options. This command does not
range-check the values entered, and it is possible to make your system
inoperative. Always perform a sanity check (do not, for example, set a
maximum value that is less than the corresponding minimum value). If you do
not understand the purpose of a network attribute, find out what it does
before changing it.

To display a network attribute, use no -o attribute. For example, to display the
value of thewall, use no -o thewall.

To set the value of a network attribute, use no -o attribute=value. For
example, to set the value of thewall to 65536, use no -o thewall=65536.

Before setting network attributes, check the current values. Use no -a to list
all network attributes.

To set a network attribute back to the default value, use no -d attribute. For
example, to set the network attribute thewall back to the default value, use no

lsattr -El css0
bus_mem_addr 0x04000000 Bus memory address False
int_level 0xb Bus interrupt level False
int_priority 3 Interrupt priority False
dma_lvl 8 DMA arbitration level False
spoolsize 524288 Size of IP send buffer True
rpoolsize 524288 Size of IP receive buffer True
adapter_status css_ready Configuration status False

Each adapter has a different set of attributes. Figure 93 is only an example
of using lsattr to check adapter attributes.

Note
IBM Performance Tools 215

-d thewall. Default values are often not optimal for the RS/6000 SP, but they
do provide a stable network environment.

Place changes made to network tunables via no into /tftpboot/tuning.cust
except changes to the Address Resolution Protocol (ARP) parameters. These
must be placed into /etc/rc.net. Placing changes in these files insures that the
next time the system is booted, the changes will remain in effect.

We will not cover all the network attributes that are set using no. We only
discuss the network attributes that we have found play an important role in
network optimization on the RS/6000 SP.

11.5.7.1 Setting Upper Memory Bound for Communications
The network attribute thewall sets the upper bound on memory that can be
used by the communications subsystem. The value is specified in KB.

Example:

no -o thewall=65536

This sets the maximum amount of memory allocated to the communications
subsystem to 64 MB.

Changes to this attribute take effect immediately for new connections.

11.5.7.2 Setting Upper Bounds for Network Buffers
To limit the memory that all network buffers use, set sb_max. This value is
specified in bytes.

Do not set this attribute to a value larger than the network attribute thewall.

Set the limits of the send and receive buffers for each socket connection in
bytes using the following network attributes:

udp_sendspace Sets the maximum size of each UNIX Domain Protocol
(UDP) socket send buffer. This value must be less than or
equal to sb_max.

tcp_sendspace Sets the maximum size of each TCP socket send buffer.
This value must be less than or equal to sb_max.

upd_recvspace Sets the maximum size of each UDP socket receive buffer.
This value must be less than or equal to sb_max.

tcp_recvspace Sets the maximum size of each TCP socket receive buffer.
This value must be less than or equal to sb_max.
216 RS/6000 SP System Performance Tuning

We recommend, for the RS/6000 SP, that the largest socket buffer should not
exceed half the value assigned to the network attribute sb_max.

We also recommend that the buffers should be larger than the largest MTU.

The network attribute ipqmaxlen sets the maximum number of packets that
can be held in the input queue.

Example:

no -o sb_max=2097152 -o tcp_sendspace=524288 -o tcp_recvspace=524288 -o
ipqmaxlen=512

Set the maximum upper memory bound to 2 MB, set the send/receive buffers
limit for each TCP socket to 512 KB, and set the input queue length to 512
packets.

With the exception of ipqmaxlen, changes take effect immediately for new
connections. Changes to ipqmaxlen take effect when the system is rebooted.

11.5.7.3 Setting Network Address Resolution Attributes
The ARP network attributes that need to be set are:

arptab_bsiz Sets the number of entries in each ARP table. We recommend
that this value be twice the number of network adapters, and
never less than the default value of 7.

arptab_nb Sets the number of ARP tables.

arpqsiz Sets the number of network packets that can be queued for an
ARP response.

Two other network address resolving attributes that often need changing are:

subnetsarelocal When set, specifies that any network packets with
addresses matching the local area network mask are local
addresses.

ipforwarding When set, enables network address forwarding to gateway
hosts for resolution.

Changes to arptab_bsiz and arptab_nb will not take effect until the system
is rebooted.

Note
IBM Performance Tools 217

Example:

no -o arptab_bsiz=7 -o arptab_nb=25 -o ipforwarding=1

Set the number of entries in each of the 25 ARP tables to 7, so that network
addresses can be forwarded to a gateway host for resolution.

11.5.7.4 Setting Transmission Unit Sizes
The network attribute tcp_mssdflt is the default maximum MTU size used
when communicating through other hosts to clients. Often, it is set to a
pessimistically small value, which does not make efficient use of network
adapters with large MTUs. If set too large, inefficiencies result as the packets
are fragmented before being forwarded onto the client.

The network attribute tcp_pmtu_discover, when set, attempts to discover the
largest MTU that can be routed through the network to a destination. This
overcomes the problem of determining an appropriate value for tcp_mssdflt.
It creates a performance problem if the routing table becomes large.

Example:

no -o tcp_mssdflt=1448 -o tcp_pmtu_discover=0

This sets the default MTU size to 1448 bytes, and turns off MTU discovery.

11.5.7.5 Enabling TCP Enhancements for High Performance
TCP enhancements for high performance are enabled by setting the network
attribute rfc1323. Use this network option for all nodes in an RS/6000 SP
complex if the SP Switch is installed.

Setting rfc1323 enables the following TCP extensions:

• An increase of the upper limit for tcp_sendspace to 4 GB, up from 64 KB
• An increase of the upper limit for tcp_recvspace to 4 GB, up from 64 KB
• An increase of the maximum window size to 4 GB, up from 64 KB

These changes take effect immediately for new connections.

Note

Not all systems support tcp_pmtu_discover. If it is used, and the host or
device targeted does not support this feature, tcp_mssdflt is used to set the
MTU size.

Note
218 RS/6000 SP System Performance Tuning

• Time-stamped acknowledgments for better round-trip estimations
• Protection against wrapped sequence numbers

If rfc1323 is not set, the RS/6000 SP complex does not take advantage of the
high switch bandwidth when using TCP.

Example:

no -o rfc1323=1

This enables the TCP extensions.

11.5.8 Tuning NFS Network Parameters Using nfso
Use this command to configure the NFS attributes.

Except for nfs_socketsize, which requires NFS to be stopped and restarted,
NFS network attributes set with this command take effect immediately.

Changes made using nfs0 are lost when the system is rebooted unless the
changes are placed in /tftpboot/tuning.cust.

To view an NFS attribute, use no -o attribute. For example, to view the
attribute nfs_socketsize, use nfso -o nfs_socketsize.

To set an NFS attribute, use no -o attribute=value. For example, nfso -o
nfs_socketsize=262144 sets the NFS attribute nfs_socketsize to 262144.

Do not change an NFS attribute unless you understand the meaning and
effect of changing it.

Always exercise care when changing NFS network attributes with nfso. No
range checking is done. Setting these attributes incorrectly can cause a
system crash or make NFS inoperative.

To obtain a list of all NFS attributes, use no -a.

NFS attributes can be reset to default values by using the no -d attribute. For
example, nfso -d nfs_socketsize sets nfs_socketsize to the default value. The
default values are not optimum, but they do provide a stable system.

We will not cover all of the network attributes that can be set using nfso, we
will only discuss the NFS attributes that we have found play an important role
in optimizing NFS on the RS/6000 SP.
IBM Performance Tools 219

For a discussion and the suggested values for NFS attributes, refer to
Chapter 8, “Global File Systems Tuning” on page 89.

11.5.8.1 Setting NFS Network Buffers
Set the send and receive buffers using the following NFS attributes:

nfs_socketsize: Sets the maximum size of the UDP send and receive buffers
in bytes.

nfs_tcp_socketsize: Sets the maximum size of the TCP send and receive
buffers in bytes.

nfs_device_specific_bufs: When set, enables NFS to use device-allocated
memory buffers if supported by the network adapter. We
recommend that this option should always be enabled.

The size of the NFS socket buffers must be less than the network attribute
sb_max. Refer to 11.5.7.2, “Setting Upper Bounds for Network Buffers” on
page 216 for a description of sb_max.

Example:

nfso -o nfs_socketsize=262144 -o nfs_tcp_socketsize=262144 -o
nfs_device_specific_bufs=1

This sets NFS socket buffer sizes to 256 KB and enables device memory
allocation of NFS buffers if supported by the adapter.

11.5.8.2 Enabling NFS TCP Enhancements for High Performance
When NFS is used with the high-speed switch, the TCP enhancements for
high performance must be enabled. Set nfs_rfc1323 to enable TCP high
performance enhancements.

For further information about the TCP high performance enhancements, refer
to 11.5.7.5, “Enabling TCP Enhancements for High Performance” on page
218.

Example:

nfso -o nfs_rfc1323=1

Enables TCP high performance network enhancements for NFS.

11.5.9 Tuning Network Switch Parameters Using chgcss
This command is used to change the kernel switch attributes.
220 RS/6000 SP System Performance Tuning

Use chgcss to change the size of the switch receive and send buffer pool
size. We recommend that the receive and send buffer pool size are larger
than the network attribute "sb_max" (refer to 11.5.7.2, “Setting Upper Bounds
for Network Buffers” on page 216).

The switch buffer pools are defined using the following switch attributes:

rpoolsize: Sets the receive buffer pool size.

spoolsize: Sets the send buffer pool size.

The switch send and receive buffer pools are pinned in memory. When
sending data, if the pool size is exceeded, temporary memory is allocated to
handle the overflow. This affects performance.

Example:

chgcss -l css0 -a rpoolsize=2097152 -a spoolsize

Set the receive and send buffer pools to 2 MB for the switch adapter css0.

Changes made to switch settings do not take effect until the switch is
restarted. Restart the system or do the following:

1. Efence node
2. ifconfig css0 down
3. ifconfig css0 detach
4. chgcss -l css0 -a rpoolsize=value -a spoolsize=value
5. rc.switch
6. Eunfence node (for HiPS switches use Estart)

Changes made to the switch parameters using chgcss are stored
permanently, but it is still a good idea to enter these changes into
/tftpboot/tuning.cust.

11.6 Investigation

We use the following steps when looking for performance problems:

1. Check for an I/O problem using iostat. Refer to 11.4.1, “Monitoring I/O
Using iostat” on page 179.

2. Check for a memory problem using vmstat. Refer to 11.2.1, “Monitoring
Memory with vmstat” on page 156.

3. Check for a CPU problem using sar. Refer to 11.3.1, “Monitoring the CPU
with vmstat” on page 167.
IBM Performance Tools 221

4. Check for a network problem using netstat. Refer to 11.5.3, “Monitoring
the Network with netstat” on page 199.

5. Check for an adapter problem using the adapter stat commands entstat,
tokstat, fddistat, atmstat, and estat. Refer to 11.5.1, “Monitoring the
Network Using Adapter Statistics” on page 195.

6. Check for a switch problem using vdidl2 or vdidl3. Refer to 11.5.2,
“Monitoring the Switch with vdidl2 or vdidl3” on page 197.

7. Check which processes are running and their resource requirements using
ps. Refer to 11.2.4, “Monitoring Memory with ps” on page 159, and 11.3.3,
“Monitoring the CPU Using ps” on page 170.

8. Check for a paging problem using lsps. Refer to 11.2.3, “Monitoring
Memory with lsps” on page 158.

11.7 Performance Toolbox for AIX (PTX/6000)

The performance toolbox for AIX (PTX/6000) is a tool to monitor and tune
system performance.

PTX/6000 uses a client/server model to monitor local and remote systems. It
presents the performance data graphically.

Figure 94 on page 223 illustrates the client/server model used by PTX/6000.
The server requests performance data from the nodes or other networked
computers. The nodes or networked computers in turn supply a stream of
performance data. The server displays the performance data graphically.
When monitoring is complete, the server informs the nodes or networked
computers to stop streaming performance data.
222 RS/6000 SP System Performance Tuning

Figure 94. PTX/6000 Network Monitoring - Client/Server Model

The ability to monitor local or remote systems and the network is important in
an RS/6000 SP environment where a large number of nodes need to be
monitored using a single point of control.

PTX/6000 has the following features:

• It monitors system resources.

• It analyzes system resource statistics.

• It uses a Graphical User Interface (GUI).

• It is able to process Simple Network Management Protocol (SNMP)
requests.

• It supports the RS/6000 SP Performance Toolbox Parallel Extensions
(PTPE).

• It has an Application Programming Interface (API) to create
custom-written applications for analysis of performance archives.

Control

perfserver

perfagent

Workstation

Networked
System

Node or

perfagent

Networked
System

Node or

perfagent

Networked
System

Node or

perfagent

Networked
System

Node or

perfagent

Request
Performance
Data

Performance
Data

Network
IBM Performance Tools 223

11.7.1 PTX/6000 Installation
In an RS/6000 SP environment, we recommend that PTX/6000 be installed
on the control workstation and any nodes which are to be monitored or
managed.

We also recommend that the control workstation be used as a PTX/6000
server. The control workstation is designed to be a single point of
management. Using a node introduces another point of management and
adds an additional system overhead.

11.7.1.1 Installation of PTX/6000 on the Control Workstation
The steps we used to install PTX/6000 on our control workstation were:

1. Create a PTX/6000 install directory:

mkdir -p /spdata/sys1/install/sp4/ptx

2. Change the working directory to the install directory:

cd /spdata/sys1/install/sp4/ptx

3. Load the PTX/6000 file sets into the install directory. The method used will
vary depending on the location and media chosen. We used ftp to retrieve
the file sets from an ftp server.

The file sets required are:

• perfagent.server: Performance agent and daemons

• perfagent.tools: Local performance analysis and control commands

• perfmgr: PTX/6000 performance monitoring software

• perfmgr.local: PTX/6000 local monitoring software

• perfmgr.network: PTX/6000 remote monitoring software

4. Install the PTX/6000 performance management software:

installp -aXd /spdata/sys1/install/sp4/ptx perfmgr

5. Install the PTX/6000 local monitoring software:

installp -aXd /spdata/sys1/install/sp4/ptx perfmgr.local

6. Install the PTX/6000 network monitoring software:

installp -aXd /spdata/sys1/install/sp4/ptx perfmgr.network

7. Verify the installation:

lslpp -l perfmgr.*

8. From the delivery of PSSP 2.2 onwards, the PTX/6000 agent software is a
prerequisite. It should, therefore, already be installed.
224 RS/6000 SP System Performance Tuning

To check if it is installed, use lslpp -l peragent.*.

If it has not been installed, use the following steps to install the PTX/6000
agent software:

1. Install the PTX/6000 remote agent:

installp -aXd /spdata/sys1/install/sp4/ptx perfagent.server

2. Install the PTX/6000 remote agent tools:

installp -aXd //spdata/sys1/install/sp4/ptx perfagent.tools

3. Verify the installation:

lslpp -l perfagent.*

9. Export the install directory from the control workstation to the nodes:

/usr/sbin/mknfsexp -d ’/spdata/sys1/install’ -t ’rw’ \

-r ’<sp node list>’ ’B’

11.7.1.2 Installation of PTX/6000 on Each Node
To check if the perfagent software has already been installed, use lslpp -l
perfagent.*. If perfagent.server or perfagent.tools are not installed, the
following steps will install them:

1. Create an NFS mount directory for the software installation:

mkdir -p /install

2. NFS-mount the installation directory:

mount <control workstation>:/spdata/sys1/install/sp4 /install

3. Install the PTX/6000 remote agent:

installp -aXd /install/ptx perfagent.server

4. Install the PTX/6000 remote agent tools:

installp -aXd /install/ptx perfagent.tools

5. Verify the installation:

lslpp -l perfagent.*

You must be logged on as root to install PTX/6000.

Note

You must be logged on as root to install PTX/6000.

Note
IBM Performance Tools 225

11.7.2 Using PTX/6000 to Monitor an RS/6000 Cluster
The PTX/6000 performance manager is started from the command line with
xmperf.

Performance monitoring has been set up by using a hierarchal relationship
between the performance monitoring objects. Figure 95 shows the monitoring
relationships.

Figure 95. PTX/6000 Monitoring Presentation Component Hierarchy

A console is a frame that encompasses performance monitoring instruments.
PTX/6000 provides default consoles. Use the default consoles as templates
when creating new consoles.

An instrument is a frame that displays performance data. An instrument
defines the type of display used to present the performance data. The
instruments supplied are:

• Area graph
• Bar graph
• Line graph
• Pie chart
• Skyline graph
• Speedometer
• State bar
• State light

A value is a performance statistic that is displayed by an instrument. A
performance instrument can display multiple values. Depending on the type
of instrument, the values are displayed and stacked differently.

Console

Instrument

Value

Instrument

Value Value Value Value Value
226 RS/6000 SP System Performance Tuning

Figure 96 on page 227 shows an example of using the PTX/6000 GUI
interface xmperf to monitor an RS/6000 SP control workstation.

Figure 96. Monitoring a System Using PTX/6000

We created a console (SPMON_F4shown in Figure 96) that encapsulated the six
elements we recommend should be monitored:

1. CPU

• Kernel CPU time
• CPU I/O wait
• User CPU time
• System call CPU time

2. VMM

• Percentage of page space free
• Percentage of real memory free
• Page reclaims
IBM Performance Tools 227

• Page in count
• Page out count

3. Disk activity

• Utilization of hdisk0
• Utilization of hdisk1
• Utilization of hdisk2

4. Memory

• Percentage of real memory computational pages
• Percentage of real memory noncomputational pages (file pages)
• Percentage of total memory computational
• Percentage of total memory noncomputational (file pages)
• Percentage of real memory pinned (nonswappable)

5. Network

• Packets received on adapter tr0
• Packets sent on adapter tr0
• Packets received on adapter en0
• Packets sent on adapter en0
• Packets forwarded
• Total packets received
• Datagrams sent

6. I/O kernel calls

• Number of bytes read
• Number of bytes written
• Size of run queue
• Number of runnable processes waiting to be paged in

We observed that, with a tool like PTX/6000, the initial reaction is often to
display as much data as possible. This leads to an aesthetically unpleasing
appearance, where critical performance figures are hidden by details.

We recommend that a high-level system monitoring console similar to the
example shown in Figure 96 on page 227 be created. Use this console to
display performance values that, in your environment, are key elements in
determining when system performance and throughput are unacceptable.

For further information about PTX/6000, refer to Performance Toolbox
Version 1.2 and 2 for AIX: Guide and Reference, SC23-2625.
228 RS/6000 SP System Performance Tuning

11.8 Performance Toolbox Parallel Extensions (PTPE)

PTPE is an extension of the Performance Toolbox (PTX/6000) for use in an
RS/6000 SP complex.

PTPE is a scalable performance monitor, and when installed in an RS/6000
SP complex, it provides easy access to performance information.

Any node or group of nodes can be monitored with a single point of control.
The performance parameters and how the information is to be displayed are
definable. Monitoring can be in real time, or the performance data can be
archived for later analysis.

PTPE performance statistics can be viewed as follows:

• On a per-node basis
• Averaged across a group of nodes
• Averaged across an RS/6000 SP complex

PTPE setup, configuration and management has been integrated into
Perspectives. PTPE also supports configuration and setup using AIX
commands.

An API is provided. This allows development of customized applications to
extract information from a PTPE archive.

11.8.1 PTPE Installation
PTPE must be installed on the control workstation and on each node.

The prerequisites before installing PTPE are:

1. AIX version 4 or later.

2. RS/6000 Cluster Technology.

3. Performance Aide for AIX must be installed on the control workstation and
all nodes that will be monitored.

4. Performance Toolbox (PTX/6000) must be installed on any node or control
workstation that will be used to display or analyze the performance data.

Install PTPE on the control workstation before installing PTPE on the
nodes.

Note
IBM Performance Tools 229

11.8.1.1 Installation of PTPE on the Control Workstation
The steps we used to install PTPE on the control workstation were:

1. Create a PSSP install directory:

mkdir -p /spdata/sys1/install/pssplpp/PSSP-3.1

2. Change the working directory to the PSSP install directory:

cd /spdata/sys1/install/pssplpp/PSSP-3.1

3. Load the PSSP software into the PSSP install directory. The method used
will vary depending on the location and media chosen. We used ftp to
retrieve the PSSP software from an ftp server.

4. Install the PTPE programs:

installp -aXd /spdata/sys1/install/pssplpp/PSSP-3.1 ptpe.program

5. Install the PTPE documentation:

installp -aXd /spdata/sys1/install/pssplpp/PSSP-3.1 ptpe.docs

6. Verify the installation:

lslpp -l pte*

7. Register the PTPE spdmd daemon:

/usr/lpp/ptpe/bin/spdmdctrl -a

8. Export the PSSP install directory from the control workstation to the
nodes:

/usr/sbin/mknfsexp -d ’/spdata/sys1/install/pssplpp’ -t ’rw’ \

-r ’<sp node list>’ ’B’

9. Create a PTPE monitoring group:

/usr/lpp/ptpe/bin/ptpegroup

11.8.1.2 Installation of PTPE on Each Node
The steps we used to install PTPE on each node were:

The name of the PSSP directory will depend on the version of PSSP
that is used. We used PSSP version 3.1. The PSSP install directory was
therefore called PSSP-3.1.

Note

You must be logged in as root to install PTPE.

Note
230 RS/6000 SP System Performance Tuning

1. Create an NFS mount directory for the PSSP software installation:

mkdir -p /install_pssp

2. NFS-mount the PSSP install directory:

mount <control workstation>:/spdata/sys1/install/pssplpp /install_pssp

3. Install the PTPE programs:

installp -aXd /install_pssp/PSSP-3.1 ptpe.program

4. Verify the installation:

lslpp -l pte*

5. Add a supplier resource entry:

cp /usr/samples/perfagent/server/xmservd.res /etc/perf

echo "supplier: /usr/lpp/ptpe/bin/ptpertm -p" >> /etc/perf/xmservd.res

6. Register the PTPE spdmd daemon:

/usr/lpp/ptpe/bin/spdmdctrl -a

11.8.1.3 PTPE Monitoring Hierarchy
The collection of performance monitoring data is centralized through a
monitoring hierarchy.

Distributing the management of performance information across a number of
nodes using a performance monitoring hierarchy circumvents the inherent
limitation of simultaneous monitoring of a large number of nodes.

PTPE Monitoring Hierarchy Node Classification
The following PTPE classifications are used to describe the roles of nodes in
the hierarchy:

1. Central coordinator

One node is assigned the role of central coordinator. This node
coordinates and administers data managers.

The responsibilities of the central coordinator are:

• Calculate average statistics from the performance summaries provided
by the data managers. This provides a system-wide performance
summary.

You must be logged in as root to install PTPE.

Note
IBM Performance Tools 231

• Manage the performance data collection and archiving activities of the
data managers.

The central coordinator informs the data manager when to instruct the
nodes to start or stop collecting performance data. It also informs the
data managers when to instruct the nodes to archive performance
data.

• Route all PTPE API requests.
232 RS/6000 SP System Performance Tuning

2. Data managers

In a PTPE hierarchy, nodes are assigned data management responsibility
for other nodes. These data management nodes coordinate the collection
of performance data from the nodes reporting to them.

The responsibilities of the data manager are:

• Calculate average statistics from the performance summaries provided
by each node in the group. This provides a group performance
summary.

• Manage the collection and archiving of performance data within the
group as directed by the central coordinator.

• Routes requested performance data from the nodes managed back to
the requester.

3. Reporters

Reporters collect performance data and report this data to their data
managers.

The responsibilities of reporters are:

• Calculate average statistics from the performance data.

• Collect performance data.

• Provide requested performance data back to their data managers.

4. Non-Participants

Nodes that do not participate in the PTPE performance hierarchy do not
report performance data.

Planning a PTPE Monitoring Hierarchy
Several considerations should guide the planning of a PTPE monitoring
hierarchy:

1. Which nodes can accept increased network traffic?

The central coordinator must be managed by a data manager.

Note

Data managers are reporters and report to themselves or another data
manager. The central coordinator is also a reporter.

Note
IBM Performance Tools 233

Managers and the central coordinator should be chosen from nodes that
fall into this group.

2. Which nodes can be grouped together to yield the most meaningful
performance summaries?

Nodes that can be grouped and will give meaningful indications of system
activity should be grouped together under a single data manager.

Examples of logical groups:

• Database servers
• File servers
• Application servers
• Gateways

3. The number of nodes reporting to each data manager.

The more nodes that report to each data manager, the greater the
performance impact.

Fewer nodes reporting to each data manager reduces the additional
overhead for the data managers, but it increases the effort required to
manage the complex.

For example, if all database servers report to one data manager, a single
point of reference to identify the database server performance is achieved.

4. Should all nodes be monitored?

Nodes with dedicated tasks, or nodes that require all of their resources
may need to run without the additional overhead of collecting and
reporting performance data.

Designing and Documenting a PTPE Monitoring Hierarchy
Before implementing a PTPE monitoring hierarchy, we recommend that you
create a written record of the PTPE performance monitoring hierarchy. This
record should then be included with the system’s site documentation.

An up-to-date written record of the PTPE monitoring hierarchy is a good
reference when looking at a system’s performance characteristics, or when
adding new nodes.

As an example, we set up PTPE 3.1 and documented the PTPE performance
hierarchy on an RS/6000 SP frame with 10 nodes. The frame was configured
as shown in Figure 97 on page 235.
234 RS/6000 SP System Performance Tuning

Figure 97. Example of an RS/6000 SP Frame Configuration

Node sp4n01 is an eight-way High node, which we decided would be the
central coordinator.

Nodes sp4n05 and sp4n10 we designated as data managers. Each data
manager would manage five nodes. The PTPE performance hierarchy we
used is shown in Figure 98 on page 236.

Frame 1

High

Wide

Wide

Wide

sp4n01

sp4n11

sp4n13

sp4n15

sp4n05 sp4n06

sp4n07 sp4n08

sp4n09 sp4n10

Thin

Thin

Thin

Thin Thin

Thin
IBM Performance Tools 235

Figure 98. PTPE Node Hierarchy

With the planning of our PTPE monitoring hierarchy complete, the final step
was to document the PTPE performance hierarchy.

We produced a table showing the responsibilities each node would have in
the PTPE performance hierarchy and which node they would report to. Table
27 is the documentation produced for the PTPE performance hierarchy
shown in Figure 98.

Table 27. Documenting a PTPE Performance Hierarchy

Frame Node Name Role Manager

1 1 sp4n01 Central
Coordinator

sp4n10

1 5 sp4n05 Data Manager

1 6 sp4n06 Reporter sp4n05

1 7 sp4n07 Reporter sp4n05

1 8 sp4n08 Reporter sp4n05

1 9 sp4n09 Reporter sp4n05

1 10 sp4n10 Data Manager

1 11 sp4n11 Reporter sp4n10

1 13 sp4n13 Reporter sp4n10

1 15 sp4n15 Reporter sp4n10

sp4n01

sp4n05

sp4n06 sp4n07 sp4n08 sp4n09

sp4n10

sp4n11 sp4n13 sp4n15sp4n01
236 RS/6000 SP System Performance Tuning

Installing a PTPE Monitoring Hierarchy
To create a PTPE performance hierarchy on the control workstation, use the
Perspectives performance manager, or the command ptpehier .

We created a UNIX file, /etc/ptpe_hierarchy, to define the PTPE performance
hierarchy definition.

Once we had defined the PTPE performance hierarchy, we used ptpehier to
add the PTPE performance monitoring to the system.

With the PTPE performance monitoring hierarchy in place, we started the
PTPE data collection process using ptpectrl .

Example:

The ptpehier command requires the PTPE performance hierarchy to be
defined as a series of node groups each with a designated node leader:

Each node group starts with {.

The first node listed is the group leader (data manager).

Other nodes listed are group members.

Each node group ends with }.

Using the PTPE performance hierarchy plan shown in Table 27 on page 236,
we created the file /etc/ptpe_hierarchy using vi as shown in Figure 99 to
define the PTPE performance monitoring hierarchy.

All nodes are participants in our PTPE performance hierarchy.

Note
IBM Performance Tools 237

Figure 99. PTPE Performance Hierarchy Definition

In Figure 99 on page 238, sp4n05.msc.itso.ibm.com and
sp4n10.msc.itso.ibm.com are group leaders (data managers).

Installation of the PTPE performance hierarchy using the definitions shown in
Figure 99 on page 238 was done with ptpehier . The procedure we used is
shown in Figure 100.

Figure 100. Installing a PTPE Performance Hierarchy

With the PTPE performance monitoring hierarchy installed, we initialized
PTPE for data collection using ptpectrl -i . Figure 101 shows that PTPE is
now set up to monitor the performance of our complex.

{
sp4n05.msc.itso.ibm.com
sp4n06.msc.itso.ibm.com
sp4n07.msc.itso.ibm.com
sp4n08.msc.itso.ibm.com
sp4n09.msc.itso.ibm.com
}
{
sp4n10.msc.itso.ibm.com
sp4n01.msc.itso.ibm.com
sp4n11.msc.itso.ibm.com
sp4n13.msc.itso.ibm.com
sp4n15.msc.itso.ibm.com
}

/usr/lpp/ptpe/bin/ptpehier -i -c sp4n01 < /etc/ptpe_hierarchy
ptpehier: Monitoring hierarchy successfully created.

The node sp4n01 is designated as the central coordinator using the
ptpehier -c <central coordinator> option.

Note
238 RS/6000 SP System Performance Tuning

Figure 101. Initializing a PTPE Performance Hierarchy

11.8.2 Using PTPE to Monitor an RS/6000 SP Cluster
PTPE is an extension to the performance toolbox (PTX/6000) for AIX.

To view or monitor the performance of an RS/6000 SP complex with PTPE,
the runtime monitor from PTX/6000 is required. A brief introduction to
PTX/6000 can be found in 11.7, “Performance Toolbox for AIX (PTX/6000)” on
page 222.

PTPE aggregates system statistics only when enabled. This eliminates the
overhead of collecting and maintaining these statistics when they are not
required.

To enable collection of aggregated statistics, use ptpectrl as shown in Figure
102.

Figure 102. Enabling PTPE Aggregate Data Collection

ptpectrl -i
--
ptpectrl: Beginning setup for performance information collection.
ptpectrl: Reply from the Central Coordinator expected within 255 seconds. OK.
ptpectrl: Setup for collecting performance information succeeded.
--
ptpectrl: Command completed.
--

ptpectrl -c
--
ptpectrl: Starting collection of performance information.
ptpectrl: Reply from the Central Coordinator expected within 255 seconds. OK.
ptpectrl: Performance information collection successfully started.
--
ptpectrl: Resetting statistic controls for collection.
ptpectrl: Reply from the Central Coordinator expected within 270 seconds. OK.
ptpectrl: Some systems reported that they were not ready to accept the request.

Pausing 15 seconds to retry command.
ptpectrl: Attempting the command again.
ptpectrl: Reply from the Central Coordinator expected within 270 seconds. OK.
ptpectrl: Enabling statistics for performance information collection.
ptpectrl: Reply from the Central Coordinator expected within 270 seconds. OK.
ptpectrl: Enabling and restriction of statistics complete.
--
ptpectrl: Command completed.
--
IBM Performance Tools 239

With the collection of aggregated system statistics enabled, the performance
toolbox GUI and libraries have these statistics available when monitoring a
data manager or central coordinator.

When monitoring the central coordinator, selecting aggregated system
statistics provides aggregated statistics across the complex for all nodes that
are participants in the performance monitoring hierarchy.

When monitoring a data manager, selecting aggregated system statistics
provides statistics aggregated for all nodes that report to the data manager.

Figure 103 on page 240 is an example of selecting the aggregated statistics
when adding values to a PTX/6000 monitoring instrument. In this example,
we are selecting aggregated system statistics for the complex from the
central coordinator sp4n01.

Figure 103. Selecting PTPE Aggregate System Statistics

When monitoring of the complex or node groups has been completed, the
gathering of aggregated system performance data should be disabled. This
240 RS/6000 SP System Performance Tuning

eliminates the additional overhead the gathering of aggregated system
statistics places on nodes participating in the performance monitoring
hierarchy.

To disable collection of aggregated statistics, use ptpectrl as shown in
Figure 104 on page 241.

Figure 104. Disabling PTPE Aggregate Data Collection

For further information about PTPE, refer to Customizing Performance
Toolbox and Performance Toolbox Parallel Extensions for AIX, SG24-2011, or
IBM Parallel System Support Programs for AIX Performance Monitoring
Guide and Reference Version 3 Release 1, SA22-7353.

ptpectrl -s
--
ptpectrl: Reply from the Central Coordinator expected within 270 seconds. OK.
ptpectrl: Performance information collection successfully stopped.
--
ptpectrl: Command completed.
--
IBM Performance Tools 241

242 RS/6000 SP System Performance Tuning

Chapter 12. Non-IBM Performance Tools

Besides the set of powerful performance monitoring and tuning tools from
IBM, a couple of other mostly free performance tools are also worth
mentioning. The following list of additional tools does not claim to be
complete, but these are tools we worked with and can recommend.

12.1 The Real Time IBM RS/6000 AIX System Monitor

This tool was developed mainly by Jussi Maki, who works in the Computing
Center of the Helsinki University of Technology (HUT) as a systems analyst in
Systems Support Division.

When the HUT bought their first RS/6000 machines in 1990, they were
looking for a performance monitoring tool that provides constantly updated
AIX statistics on a dumb screen.

The only tools available at that time were the standard UNIX statistics tools
ps, vmstat, iostat, nfstat, netstat, and so on. These raw tools do not give an at
a glance view, which was needed when monitoring the entire systems
utilization.

They decided to develop their own performance monitor. It is a text screen
application that periodically updates most of the available system status
information. The tool is available at no charge.

How do I get it? It you are interested in getting the source code, visit the
authors Web-page at http://www.csc.fi/~jmaki/ and download the
appropriate package. Bear in mind that you will need a C Compiler on your
system.

Another solution is to look for a binary version and download it. You will find it
on http://www.bull.de . On this server, bull provides a lot of freeware
packages in installable lpp format.

Here is a list of system events that are monitored:

• CPU usage
• Load average (from kernel or by using the loadavgd program)
• Virtual and real memory usage (both process and file pages)
• Paging information
• Process events
• Disk I/O
• TTY I/O
© Copyright IBM Corp. 1999 243

• Network activity
• Top CPU users
• NFS operations
• More detailed disk I/O screen (with the -disk option)
• More detailed information on multiprocessor SMP machines

Brief Tutorial

You can start monitor without command line options. The screen (see Figure
105) contains all the vital information about a running system.

Figure 105. monitor - Without Options

There are more details about Disk, Network, and Top processes on other
screens. To get to these, just type the first letter:

• d = disks
• n = network
• t = top processes
• s = SMP CPU details
• a = show more (all) of the previously selected screen
• h = help
• q = QUIT

Figure 106 on page 245 shows the results of using the monitor with the disk
and top options.
244 RS/6000 SP System Performance Tuning

Figure 106. monitor - Disk and Top Statistics

It is beyond the scope of this book to describe all the options of monitor. For
more detailed information, look at the manpages after installing the monitor.

12.2 POWER2 Hardware Performance Monitoring

Besides the more universal performance tool described in the preceding
section, the same author offers a free Hardware Performance Monitoring
(HPM) tool especially for IBM POWER2 CPUs. This package consists of a
library, a data collection daemon, kernel extensions, and a few utilities. These
tools can be used only with systems that have IBM POWER2 CPUs (for
example, RS/6000 model 590, model 390, or some models of IBM SP).

This tools package is available as free software. Send an e-mail to
Jussi.Maki@csc.fi to get the package. Due to some confidentiality in
POWER2 CPU internals, the distribution will be in source code form after
IBM's approval.

HPM tools are especially useful when tuning and benchmarking floating-point
operation-intensive applications. The tools can also be used to monitor CPU
utilization on different parts (for example, fixed-point units, floating-point
units, and cache operations). Actually, the POWER2 CPU has dozens of
measurable events. These tools address only a subset of these concentrating
on fixed-point and floating-point operations and cache usage.
Non-IBM Performance Tools 245

There are some limitations in multiuser environments: measurement is done
for the whole system (utilization in user and kernel parts can be separated).
Single application measurements can be done when there are no other users
using the CPU. Real multiuser support would require support for kernels by
IBM, which is not available at the moment. The system, however, provides
multiple monitoring sessions and a single-user measurement session.

The data collection consists of a single-user space server, rs2hpmProvider,
which accesses the POWER2 HPM registers by using a preloaded
rs2hpm-kex kernel extension. The server process collects the 32-bit counters
in regular intervals and stores them in 64-bit format; so, the data will not
overflow for measurements longer than a few minutes. The server also
enables access control to data instead of several users at the same time
accessing the actual hardware counters and thus obtaining possible garbage
information.

Figure 107 shows the appearance of rs2mon.

Figure 107. rs2mon Output

The server provides the data via the TCP/IP interface using a simple request
and acknowledgment protocol.

Part of the toolkit is the sp2flops command, which relies on the client-server
architecture of the package. sp2flops shows hardware performance data for
the SP machines using POWER2 CPU HPM information.

IBM POWER2 HARDWARE PERFORMANCE MONITOR
Host: cactus-1 Date: 95/10/18 Time: 18:15:31

USER MODE CACHE SYSTEM MODE SYSTEM CACHE
CPU% 97.7 DataM 9776.1k CPU% 2.3 DataM 39.7k
MIPS 124.0 DataS 268.7k MIPS 0.7 DataS 14.6k
MFLOPS 184.1 DataRL 651.9k DMAr 0.0 DataRL 38.8k
Fadds 92.1 InstRL 6.0k DMAw 0.0 InstRL 494.4k
Fmuls 0.0 TLBmis 4.4k TLBmis 2.7k
Fmas 92.1

CPU Units usage SCU usage CPU Units usage SCU usage
FXU0 47.3M Mreads 660.7k FXU0 0.4M Mreads 0.0k
FXU1 28.6M Move 268.7k FXU1 0.2M Move 14.6k
FPU0 46.2M FPU0 0.0M
FPU1 45.8M FPU1 0.0M
ICU 48.1M ICU 0.1M
246 RS/6000 SP System Performance Tuning

Our example in Figure 108 shows a subset of SP nodes (nodes 10-16).

Figure 108. sp2flops Output

For more information, refer to the author’s Web page.

12.3 NetPerf

Netperf is a benchmark in the public domain that can be used to measure
various aspects of networking performance. The primary focus of this
package is on bulk data transfer and request/response performance with
CPU utilization using either TCP or UDP and the Berkeley Sockets interface.
Netperf is also a good testing tool for communication and network software. It
was designed around the basic client-server with point-to-point model. It was
originally designed by Hewlett-Packard (HP) and is now maintained and
informally supported by the IND Networking Performance Team. It is not
supported by any of the normal Hewlett-Packard support channels.

Netperf is distributed in source form. This allows installation on a variety of
systems. There are two ways to install netperf. The first runs the netperf
server program, netserver, as a child of inetd, which requires that the installer
of netperf be able to edit the files /etc/services and /etc/inetd.conf (or their
equivalent).

The second is to run netserver as a standalone daemon. This method does
not require edit capabilities on /etc/services and /etc/inetd.conf, but does
mean that you must remember to run the netserver program explicitly.

Netperf is designed around the basic client-server model. There are two
executables: netperf and netserver. Generally, you will only execute the

% sp2flops
SP2FLOPS 1995-10-19 21:33 Data cache operations
Nodename US% SY% MIPS MFLOPS Store Reload Misses
cactus-10 99% 1% 34.9 70.2 2883.8k 14667.9k 307.6k
cactus-11 98% 2% 34.8 28.6 1815.3k 7971.8k 1661.4k
cactus-12 98% 2% 34.8 28.6 1828.9k 8041.1k 1657.8k
cactus-13 99% 1% 56.7 72.1 1339.0k 10350.7k 1055.3k
cactus-14 98% 2% 34.7 28.6 1820.0k 8018.8k 1656.9k
cactus-15 97% 3% 29.2 61.0 2402.4k 12080.6k 257.2k
cactus-16 98% 2% 29.9 62.6 2470.8k 12279.8k 223.5k
Total 98% 2% 255.0 351.8
Non-IBM Performance Tools 247

netperf program. The netserver program will be invoked by the other system's
inetd.

When you execute netperf, the first thing that happens is the establishment of
a control connection to the remote system. This connection is used to pass
test configuration information and results to and from the remote system.
Regardless of the type of test being run, the control connection is a TCP
connection using BSD sockets.

Once the control connection is up and the configuration information has been
passed, a separate connection is opened for the measurement itself using
the APIs and protocols appropriate for the test. The test is performed, and the
results are displayed.

Netperf places no traffic on the control connection while a test is in progress.
Certain TCP options, such as SO_KEEPALIVE, if set as your system's
default, may put packets out on the control connection.

The most common use of netperf is for measuring bulk data transfer
performance. This is also referred to as stream or unidirectional stream
performance. Essentially, these tests measure how fast one system can send
data to another and/or how fast that other system can receive it.

12.3.1 TCP Stream Performance
The TCP stream performance test is the default test type for the netperf
program. The simplest test is performed by entering the command:

netperf -H remotehost

This performs a 10 second test between the local system and the system
identified by remotehost. The socket buffers on either end are sized
according to the systems' defaults and all TCP options (for example
TCP_NODELAY) are at their default settings.

To assist in measuring TCP stream performance, two script files are provided
with the netperf distribution: tcp_stream_script and tcp_range_script.
Tcp_stream_script invokes netperf based on the setting of script variables
controlling socket and send sizes. Tcp_range_script performs a similar set of
tests, the difference being that where tcp_stream_script tests specific
datapoints, tcp_range_script performs tests at points within a specified range.

If you would like to perform tests other than those done by the scripts, you
can invoke netperf manually. Some of the options you will likely want to
experiment with are:
248 RS/6000 SP System Performance Tuning

• -s sizespec, which will set the local send and receive socket buffer sizes to
the value(s) specified. Default: system default socket buffer sizes.

• -S sizespec, which behaves just like -s but for the remote system.

• -m value, which sets the local send size to value bytes. Default: local
socket buffer size.

• -M value, which behaves like -m setting the receive size for the remote
system. Default: remote receive socket buffer size.

• -l value, which sets the test length to value seconds when value is > 0 and
to |value| bytes when value is < 0.

• -D, which sets the TCP_NODELAY option to true on both systems.

This is not a complete list of options that can affect TCP stream performance,
but it does cover the options that are used most often.

12.3.2 UDP Stream Performance
A UDP stream performance test is very similar to a TCP stream test. One
difference is that the send size cannot be larger than the smaller of the local
and remote socket buffer sizes. What this means is that you must make
certain that when you specify the -m option, you use a value that is less than
or equal to the socket buffer sizes (-s and -S). Also, since the UDP stream
test is not the default test, the -t testname option must be specified with
testname set to UDP_STREAM. So, a simple UDP stream test command
might look something like this:

netperf -H remotehost -t UDP_STREAM -- -m 1024

The script udp_stream_script is provided to perform various UDP stream
performance tests. As with TCP stream performance, you can use the script
provided or perform tests yourself to get data points not covered by the script.

UDP is an unreliable protocol. It is important that you examine the results
carefully because the reported send rate can be much higher than the
actual receive rate. Great care should be taken when reporting
UDP_STREAM test results to make sure they are not misleading. For
example, one should always report both send and receive rates together
for a UDP_STREAM test. If you only report a single number, you should
report the receive rate.

Note
Non-IBM Performance Tools 249

Request/response performance is the second area that can be investigated
with netperf. Generally speaking, netperf request/response performance is
quoted as transactions/s for a given request and response size. A transaction
is defined as the exchange of a single request and a single response. From a
transaction rate, one can infer one-way and round-trip average latency.

12.3.3 TCP Request/Response Performance
The TCP request/response test can be invoked with netperf through the use
of the -t option with an argument of TCP_RR. So, a default request/response
command would look something like this:

netperf -H remotehost -t TCP_RR

and use the system default socket buffer sizes, a default request size of 1
byte, and a default response size of 1 byte.

As with the stream performance tests, a script is available to assist you in
generating TCP request/response performance numbers: tcp_rr_script.
However, if you should need to generate numbers at points of your own
choosing, these command line options will be of use:

• -r sizespec sets the request and/or response sizes based on sizespec.

• -l value sets the test duration based on value. For value > 0, test duration
will be value seconds. Otherwise, test duration will be |value| transactions.

• -s sizespec sets the local send and receive socket buffer sizes to the
value(s) specified (default: system default socket buffer sizes).

• -S sizespec, which behaves just like -s but for the remote system.

• -D sets the TCP_NODELAY option to true on both systems.

The request and response sizes will be the buffer sizes posted to send and
receive. The -m and -M options are not meaningful for a TCP_RR test. Since
TCP is a stream protocol and not a message protocol, it is necessary to loop
on receives until the entire message is delivered. The buffer pointer passed
to the first receive for an individual transaction will be aligned and offset as
requested by the user. It will be incremented by the number of bytes received
each time until the entire request/response is received. The buffer pointer will
be realigned and offset for the next transaction.

12.3.4 UDP Request/Response Performance
UDP request/response performance works just like TCP request/response
performance. All the options available for the latter are present except for the
-D option; TCP_NODELAY has no meaning for a UDP test. To invoke a UDP
250 RS/6000 SP System Performance Tuning

request/response test, use an argument of UDP_RR with the -t option to
produce a command something like this:

netperf -H remotehost -t UDP_RR

Again, a script is provided which will generate results for some of the more
common data points: udp_rr_script.

These are only some examples of the use of netperf. For more information
look at:

http://www.netperf.org

Here, you will find pointers to the latest document and the latest source code.

12.4 ttcp Program

The public domain ttcp program was developed by T.C. Slattery, USN. The
code was modified several times by various authors The latest known version
is 3.8, available from ftp servers at CERN.

The ttcp program is easy to use for TCP performance measurements. It
generates and transfers synthetic data. Also, you can feed an input stream to
ttcp that will then be transferred.

There is no good documentation available for this package; you have to look
at the source code.

12.5 Other Commercial Performance Monitor Sources

In addition to IBM products, other commercial performance monitoring
applications are available from various vendors like BGS Systems (BEST/1),
CIS Inc., and Landmark Systems Corporation.
Non-IBM Performance Tools 251

252 RS/6000 SP System Performance Tuning

Appendix A. Performance Problem Checklist

1. Check all nodes and the Control Workstation for default AIX network
tunables:

no -a

2. Check Control Workstation network adapters for transmit queue overflow
errors particularly the adapters to the SP Ethernet:

• entstat

• tokstat

• fddistat

• atmstat

3. Check all node Ethernet adapters for transmit queue overflow errors. Pay
particular attention to rack SP Ethernet gateway nodes:

dsh -a "entstat en0 | grep Overflow"

Similarly, for SP Ethernet gateway nodes:

dsh -a "entstat en1 | grep Overflow"

4. Check to see that the ARP cache is set correctly for systems greater than
128 nodes:

arp -a | wc -l.

5. Check vdidl2/3 for failed counts on the switch send pool:

/usr/lpp/ssp/css/vdidl3 -i

6. Check nodes using the netstat -i output for unexpected or unbalanced
traffic flow.

7. For NFS, check for client timeout and retry counts. These indicate an NFS
server that has too few nfsd daemons and/or too small an nfs_socketsize:

nfsstat -c

8. Check ps gvc for runaway processes:

• Look for processes causing lots of pagein counts.

• Look for processes using up lots of memory

9. Check vmstat for paging:

• Check for page scan rates in the sr column.

• Check for page freeing rates in the fr column.
© Copyright IBM Corp. 1999 253

254 RS/6000 SP System Performance Tuning

Appendix B. Hardware Details

In this appendix, we give an overview of the nodes available at the time the
book was written plus a node selection criteria scheme that may help you find
the right node for your application.

B.1 Node Types

The SP processor nodes are built from and architecturally equivalent to
specific RS/6000 server models. The 160 MHz thin and the 135 MHz wide
nodes use P2SC (POWER2 Super Chip) while the high node is supplied by
604e PowerPC processors. The 332 MHz thin/wide nodes use 604+LX
PowerPC, while the 200 MHz thin/wide SMP nodes use POWER3©
processors. The S70 node uses 64-bit PowerPC RS64, and S7A uses 64-bit
PowerPC RS64 II.

Table 28. SP Nodes Overview

1 2/4/6/8-way PowerPC 604e.
2 2/4-way PowerPC 604+LX.
3 4-way PowerPC RS64 64-bit.
4 4-way PowerPC RS64 II 64-bit.
5 This data cache is for each pair of processors.

Node Type Processor Data Cache MCA/PCI Slots
Available

Memory
Bus
Bandwidth

no
Switch

using
Switch

Thin Node 160 MHz (397) P2SC 128 KB 4 3 256-bit

Wide Node 135 MHz (595) P2SC 128 BK 7 6 256-bit

High Node 200 MHz (J50) PowerPC 1 32K + 2MB L2 5 14 13 256-bit

Thin Node 332 MHz (H50) PowerPC 2 32K + 256KB L2 5 2 6 2 7 128-bit

Wide Node 332 MHz (H50) PowerPC 2 32K + 256KB L2 5 10 6 10 7 128-bit

S70 Node 125 MHz PowerPC 3 64K + 4MB L2 5 11 6 8 8 Dual 512-bit

S7A Node 262 MHz PowerPC 4 64K + 8MB L2 5 11 6 8 8 Dual 512-bit

Thin Node 200 MHz POWER3 9 64K + 4MB L2 5 2 6 2 7 128-bit

Wide Node 200 MHz POWER3 9 64K + 4MB L2 5 10 6 10 7 128-bit
© Copyright IBM Corp. 1999 255

6 These slots are PCIs.
7 SP Switch MX Adapter does not use an I/O slot.
8 SP System Attachment Adapter requires 3 PCI slots.
9 1/2-way 64-bit processor.

Characteristics of these nodes vary by:

• The bandwidth of the internal bus.

• The number of CPUs (the high nodes are SMP systems with 2, 4, 6, or 8
processors).

• The maximum amount of memory.

• The number of available microchannels or PCI adapter slots.

• The amount of memory bandwidth (one word = 32 bits).

The memory bandwidth is important when considering system performance.
The memory bandwidth word size specifies how many words of data can be
moved between memory and data cache per CPU cycle.

B.2 Roles of Nodes

There are a variety of nodes to choose from when you configure an SP
system. The following is a short overview that gives some guidance for your
node selection.

Thin Node
Thin nodes are suitable for a wide range of applications including all
commercial applications and most scientific and technical applications.

Wide Node
Wide nodes in some cases demonstrate superior performance over thin
nodes even though they share the same type and number of processors. This
is due to the existence in the wide node of a second controller that attaches
eight additional slots to the internal bus. For some I/O-related performance,
this could be significant. For example, with SSA disks, the data rate
performance increases from about 40 MBps on a thin PCI node to more like
70 MBps on a wide PCI node. This alone might be reason enough for
selecting wide nodes rather than thin nodes. The incremental cost in using
wide nodes rather than thin nodes may well be a good investment if balanced
performance is of importance. A specific application example where the extra
performance is likely to be observed when using a PCI wide node would be
when using the PCI node as a disk server node for a GPFS file system. Up to
double the bandwidth could be achieved with a wide node in this case.
256 RS/6000 SP System Performance Tuning

High Node
High nodes are more suited for multithreaded applications such as
commercial database processing.

S70/S7A External Node
The S70/S7A External Server is a PowerPC RS/6000 model capable of 32- or
64-bit processing. It is best suited as a powerful database server. Both nodes
can have 4-, 8-, or 12-way processors. The S70 has a 125 MHz PowerPC
RS64 processor. The S7A has a PowerPC RS64II processor with 262 MHz.

Router Node
Router nodes are dependent nodes that extend the RS/6000 SP system’s
capabilities. They are not housed in the frame but are dependent on the
switch existing in the environment. An RS/6000 SP Switch Router is a
high-performance I/O gateway for the RS/6000 SP system and provides the
fastest available means of communication between the RS/6000 SP system
and the outside world or among multiple RS/6000 SP systems. The Ascend
GRF switched IP router can be connected to the SP switch via the SP Router
Adapter. The Switch Router Adapter provides a high-performance 100 MBps
full duplex interface between the SP Switch and the Ascend GRF.

B.3 Communication Paths

Two communication paths between the nodes and the Control Workstation
(Ethernet network) and between the frame and the Control Workstation are
mandatory for an SP system. The switch network is optional.

RS232 Hardware Monitoring Line
The mandatory RS232 hardware monitoring line connects the CWS to each
RS/6000 SP frame used primarily for node and frame hardware monitoring.

Ethernet
One of the prerequisites of the RS/6000 SP is an internal bnc or 10BaseT
network. The purpose of this mandatory network is to install the nodes’
operating systems and PSSP software as well as to diagnose and maintain
the RS/6000 SP complex through the PSSP software.

B.4 System Partitioning

System partitioning within the RS/6000 SP allows you to divide your system
into logically separate systems. The concept of system partitioning is very
similar to the Virtual Machine in the mainframe environment, which supports
different machine images running in parallel; you can have a production
Hardware Details 257

image and test image within the same machine. The RS/6000 SP provides
completely isolated environments within the complex.

Although RS/6000 SP system partitioning has been used as a migration tool
to isolate test environments, this is not its primary purpose. Running various
versions of AIX and PSSP is possible without having to partition.

Now that you can differentiate between production and testing within a
complex, you can simulate a production environment and take all necessary
steps to tune your system before migrating to the true production
environment.

B.5 Node Selection Process

There are different criteria for choosing the right node for your application.
One criterion may be capacity: how many adapters, how many internal disks
or how much memory will fit into it.

Capacity
When selecting a node, you may choose to use the methodology shown in
the flowchart in Figure 109. Look at the required capacity for adapters, disks,
and memory; this will help you decide whether a thin node has sufficient
capacity. As you consider this area, take particular care to include all
adapters that will be required both now and in the near future.
258 RS/6000 SP System Performance Tuning

Figure 109. RS/6000 SP Node Selection Based on Capacity

Some of the selections that need to be made are quite straightforward
decisions and are based on concrete factors, such as the number of adapters
needed in this node or the amount of memory required.

Performance
The flow chart in Figure 110 on page 260 can be used to help make the right
choice of nodes to select from a performance perspective. It assumes you
have already made a decision on the basis of capacity as discussed earlier.

How Many Micro
Channel or PCI

Adapters?

How Much Internal
Disk Space Needed?

How Much Memory
Required?

Thin Node,
Wide Node and
High Node,
all OK

Wide or High
Node Required

Thin Node,
Wide Node and
High Node,
all OK

Thin Node,
Wide Node and
High Node,
all OK

Wide
Node Required

High
Node Required

Thin Node
Capacity

Exceeded

Thin Node and
High Node

Capacity Exceeded

Thin Node and
Wide Node

Capacity Exceeded
Hardware Details 259

Figure 110. RS/6000 SP Node Selection Based on Performance

Performance Measurements
It is important to select the correct nodes for the applications that we wish to
implement and that exploit the most appropriate architecture: serial or
parallel, uniproccesors or SMP processors. Make sure that you have a
cost-effective solution that also allows easy upgrades and a growth path as
required.

It is important not to be swayed in these considerations by any
price/performance considerations that force you to make compromises with
regard to the ideal nodes for a specific purpose. The good news is that
price/performance for all RS/6000 SP nodes, be they uniprocessor or high
nodes, is similar for the current selection of nodes.

Do we know the
required performance?

Does the application
supprt SMP?

Is the application
a parallel one?

Better to use
one type of node

Do application sizing

Uni-Processor
thin or wide

nodes to be used

Feasible to mix
node types

YES

YES

YES

NO

NO

NO

sizing complete

Now consider parallel
260 RS/6000 SP System Performance Tuning

Appendix C. No Command Man Page

Here is an excerpt from the no command man page for AIX 4.3.2:

Purpose

Configures network attributes.

Syntax

no {-a | -d Attribute | -o Attribute [=NewValue] }

Description

Use the no command to configure network attributes. This command sets or
displays current network attributes in the kernel. It only operates on the
currently running kernel. It must be run again after each startup or after the
network has been configured. Whether the command sets or displays an
attribute is determined by the accompanying flag. The -o flag performs both
actions. It can either display the value or set a new value for an attribute. For
more information on how the network attributes interact with each other, refer
to the AIX System Management Guide: Communications and Networks,
GC23-2487.

Some network attributes are runtime attributes that can be changed at any
time. Others are loadtime attributes that must be set before the netinet kernel
extension is loaded and must be placed near the rop of /etc/rc.net. If your
system uses a Berkeley style network configuration, set the attributes near
the top of /etc/rc.bsdnet.

Flags:

-a Prints a list of all configurable attributes and their current values.

-d Sets an attribute back to its default value.

-o [=NewValue] Displays the value of an attribute if NewValue is not
specified; otherwise, it sets an attribute to NewValue.

Be careful when you use this command. The no command performs no
range checking and therefore accepts all values for the variables. If used
incorrectly, the no command can cause your system to become inoperable.

Note
© Copyright IBM Corp. 1999 261

C.1 Network Attributes

You can set the following attributes:

arpqsize

This specifies the maximum number of packets to queue while waiting for
ARP responses. Default value is 1. This attribute is supported by Ethernet,
802.3, Token Ring, and FDDI interfaces. The arpqsize value is increased to a
minimum of 5 when path MTU discovery is enabled. The value will not
automatically decrease if path MTU discovery is subsequently disabled. This
attribute applies to AIX Versions 4.1.5, 4.2.1, and later. arpqsize is a runtime
attribute.

arptab_bsiz

This specifies Address Resolution Protocol (ARP) table bucket size. The
default value is 7. arptab_bsiz is a loadtime attribute.

arptab_nb

This specifies the number of ARP table buckets. The default value is 25.
arptab_nb is a loadtime attribute.

arpt_killc

This specifies the time in minutes before a complete ARP entry will be
deleted. The default value is 20 minutes. arpt_killc is a runtime attribute.

bcastping

This allows response to ICMP echo packets to the broadcast address. A
value of 0 turns it off, while a value of 1 turns it on. Default is 0. bcastping is a
runtime attribute.

clean_partial_conns

When using the -o flag, do not enter space characters before or after the
equal sign. If you do, the command will fail.

Note
262 RS/6000 SP System Performance Tuning

This specifies whether or not to avoid SYN attacks. If true, randomly remove
partial connections to make room for new non-attack connections. This is a
runtime attribute. The default is 0, that is, off.

delayack

This delays ACKs for certain TCP packets and attempts to piggyback them
with the next packet sent instead. This will only be performed for connections
whose destination port is specified in the list of the delayackports attribute.
This can be used to increase performance when communicating with an
HTTP server. It is available only in AIX 4.3.2 and beyond. The attribute can
have one of four values:

0 - No delays; normal operation

1 - Delay the ACK for the server’s SYN

2 - Delay the ACK for the server’s FIN

3 - Delay both the ACKs for the SYN and FIN

delayackports

This specifies the list of destination ports for which the operation defined by
the delayack port option will be performed. It takes a list of up to ten ports
separated by commas and enclosed in curly braces, for example, no -o
delayackports={80,30080}. To clear the list, set the option to {}. This attribute
is available only in AIX 4.3.2 and beyond.

extendednetstats

This enables more extensive statistics for network memory services. The
default for this attribute is 1. However, because these extra statistics cause a
reduction in system performance, extendednetstats is set to 0, for off, in
/etc/rc.net. If these statistics are desired, it is recommended that the code in
/etc/rc.net that sets extendednetstats to 0 be commented out. This attribute is
available only in AIX 4.3.2 and beyond.

directed_broadcast

This specifies whether or not to allow a directed broadcast to a gateway. The
value of 1 allows packets to be directed to a gateway to be broadcast on a
network on the other side of the gateway. This is a runtime attribute.

icmpaddressmask
No Command Man Page 263

This specifies whether the system responds to an ICMP address mask
request. If the default value 0 is set, the network ignores any ICMP address
mask request that it receives. This is a runtime attribute.

ie5_old_multicast_mapping

This specifies that IP multicasts on Token Ring should be mapped to the
broadcast address rather than a functional address when value 1 is used.
The default value is 0. This is a runtime attribute.

ifsize

This specifies the maximum number of network interface structures per
interface. The default value is 8. In AIX 4.3.2 and later, if the system detects
at boot time that more adapters of a type are present than would be allowed
by the current value of ifsize, it will automatically increase the value to
support the number of adapters present. ifsize is a loadtime attribute.

inet_stack_size

This lets you configure the inet interrupt stack table size. This is needed if you
are running with an unoptimized debug kernel and/or netinet. It must be set in
rc.net; changing it on the fly has no effect. This is different from the pin more
stack code because this is on interrupt. The pin more stack code is not
configurable. inet_stack_size is specified in KB (the default is 16 KB).

ipforwarding

This specifies whether the kernel should forward packets. The default value
of 0 prevents forwarding of IP packets when they are not for the local system.
A value of 1 enables forwarding. This is a runtime attribute.

ipfragttl

This specifies the time to live for IP fragments. The default value is 60 half
seconds. This is a runtime attribute.

ipqmaxlen

This specifies the number of received packets that can be queued on the IP
protocol input queue. This is a loadtime attribute.

ipignoreredirects
264 RS/6000 SP System Performance Tuning

This specifies whether to process redirects that are received. The default
value of 0 processes redirects as usual. A value of 1 ignores redirects. This
option only applies to AIX Version 4.2.1 or later. This is a runtime attribute.

ipsendredirects

This specifies whether the kernel should send redirect signals. The default
value of 1 sends redirects. A value of 0 does not send redirects. This is a
runtime attribute.
No Command Man Page 265

ipsrcrouteforward

This specifies whether the system forwards source-routed packets. The
default value of 1 allows the forwarding of source-routed packets. A value of
0 causes all source-routed packets that are not at their destinations to be
discarded. This attribute only applies to AIX Version 4.2.1 or later.

ipsrcrouterecv

This specifies whether the system accepts source-routed packets. The
default value of 0 causes all source-routed packets destined for this system
to be discarded. A value of 1 allows source-routed packets to be received.
This attribute only applies to AIX Version 4.2.1 or later.

ipsrcroutesend

This specifies whether applications can send source-routed packets. The
default value of 1 allows source-routed packets to be sent. A value of 0
causes setsockopt() to return an error if an application attempts to set the
source-routing option and removes any source-routing options from outgoing
packets. This attribute only applies to AIX Version 4.2.1 or later.

ip6_defttl

This specifies the default hop count that is used for IPv6 packets if no other
hop count is specified.

ip6forwarding

This specifies whether the kernel should forward ipv6 packets. The default
value of 0 prevents forwarding of ipv6 packets when they are not for the local
system. A value of 1 enables forwarding. This is a runtime attribute.

ip6_prune

This specifies how often to check the IPv6 routing table for expired routes.
The default is 2 seconds.

ip6srcrouteforward

This specifies whether the system forwards source-routed IPv6 packets. The
default value of 1 allows the forwarding of source-routed packets. A value of
0 causes all source-routed packets that are not at their destinations to be
discarded.
266 RS/6000 SP System Performance Tuning

maxttl

This specifies the time to live for RIP packets. The default is 255 seconds.
This is a runtime attribute.

multi_homed

This specifies the level of multihomed ipv6 host support.

0 indicates the original functionality in AIX 4.3.0. 1 indicates that link local
addresses will be resolved by querying each interface for the link local
address. 2 indicates that link local addresses will only be examined for the
interface defined by main_if6. 3 indicates that link local addresses will only be
examined for the interface defined by main_if6 and site local addresses will
only be routed for the main_site6 interface.

main_if6

This specifies the interface to use for link local addresses. This is only used
by autoconf6 to set up initial routes.

main_site6

This specifies the interface to use for site local address routing. This is only
used if multi_homed is set to 3.

maxnip6q

This specifies the maximum number of ipv6 packet reassembly queues. The
default is 20.

nbc_limit

This specifies the total maximum amount of memory that can be used for the
Network Buffer Cache. This attribute is in number of KBytes. The default
value is derived from thewall. When the cache grows to this limit, the
least-used cache objects are flushed out of cache to make room for the new
ones. This attribute only applies to AIX version 4.3.2 or later.

nbc_max_cache

This specifies the maximum size of the cache object allowed in the Network
Buffer Cache. This attribute is in number of bytes; the default is 131072
(128K) bytes. A data object bigger than this size is not put in the NBC. This
attribute only applies to AIX version 4.3.2 or later.
No Command Man Page 267

nbc_min_cache

This specifies the minimum size of the cache object allowed in the Network
Buffer Cache. This attribute is in number of bytes; the default is 1 byte. A data
object smaller than this size is not put in the NBC. This attribute only applies
to AIX version 4.3.2 or later.

ndpqsize

This specifies the number of packets to hold waiting on completion of a
Neighbor Discovery Protocol (NDP) entry. The default is 50 packets.

ndpt_down

This specifies the time, in half seconds, to hold down an NDP entry. The
default value is 3 units, or 1.5 seconds.

ndpt_keep

This specifies the time, in half seconds, to keep an NDP entry. The default
value is 120 or 60 seconds.

ndpt_probe

This specifies the time, in half seconds, to delay before sending the first NDP
probe. The default value is 5 units, or 2.5 seconds.

ndpt_reachable

Specifies the time, in half seconds, to test whether an NDP entry is still valid.
The default is 30, which means 15 seconds.

ndpt_retrans

This specifies the time in half seconds to wait before retransmitting an NDP
request. The default is 1, which means half a second.

ndpt_umaxtries

This specifies the maximum number of Unicast NDP packets to send. The
default value is 3.

ndpt_mmaxtries

This specifies the maximum number of Mulitcast NDP packets to send. The
default value is 3.
268 RS/6000 SP System Performance Tuning

net_malloc_police

This specifies the size of the net_malloc/net_free trace buffer. If the value of
this variable is non-zero, all net_malloc and net_free variables are traced in a
kernel buffer and by system trace hook HKWD_NET_MALLOC. Additional
error checking is enabled. This includes checks for freeing a free buffer,
alignment, and buffer overwrite. The default value is zero (policing off).
Values of net_malloc_police larger than 1024 allocate that many items in the
kernel buffer for tracing. This is a runtime attribute.

nonlocsrcroute

This tells the Internet Protocol that strictly source-routed packets may be
addressed to hosts outside the local network. A default value of 0 disallows
addressing to outside hosts. A value of 1 allows packets to be addressed to
outside hosts. Loosely source-routed packets are not affected by this
attribute. This is a runtime attribute.

pmtu_default_age

This specifies the default time (in minutes) before the path MTU value for
UDP paths is checked for a lower value. A value of 0 allows no aging. The
default value is 10 minutes. The pmtu_default_age value can be overridden
by UDP applications. This attribute only applies to AIX Version 4.2.1 or later
and is a runtime attribute.

pmtu_rediscover_interval

This specifies the default time (in minutes) before the path MTU values for
UDP and TCP paths are checked for a higher value. A value of 0 allows no
path MTU rediscovery. The default value is 30 minutes. This attribute only
applies to AIX Version 4.2.1 or later and is a runtime attribute.

rfc1122addrchk

This performs address validation as specified by RFC1122, Requirements for
Internet Hosts-Communication Layers. The default value of 0 does not
perform address validation. A value of 1 performs address validation. This is
a runtime attribute.

rfc1323

This enables TCP enhancements as specified by RFC 1323, TCP Extensions
for High Performance. The default value of 0 disables the RFC
enhancements on a system-wide scale. A value of 1 specifies that all TCP
No Command Man Page 269

connections will attempt to negotiate the RFC enhancements. The SOCKETS
application can override the default behavior on individual TCP connections
using the setsockopt subroutine. This is a runtime attribute.

route_expire

This specifies whether the route expires. A value of 0 allows no route
expiration, which is the default. Negative values are not allowed for this
option. This attribute only applies to AIX Version 4.2.1 or later. This is a
runtime attribute.

routerevalidate

This specifies that each connection’s cached route should be revalidated
each time a new route is added to the routing table. This ensures that
applications that keep the same connection open for long periods of time (for
example NFS) use the correct route after routing table changes occur. The
default value of 0 does not revalidate the cached routes. Turning this option
on may cause some performance degradation. This is a runtime attribute.

rto_length

This specifies the TCP Retransmit Time Out length value used in calculating
factors and the maximum retransmits allowable used in TCP data segment
retransmits. rto_length is the total number of time segments. The default is
13. This is a loadtime attribute.

rto_limit

This specifies the TCP Retransmit Time Out limit value used in calculating
factors and the maximum retransmits allowable used in TCP data segment
retransmits. rto_limit is the number of time segments from rto_low to rto_high.
The default is 7. This is a loadtime attribute.

rto_low

This specifies the TCP Retransmit Time Out low value used in calculating
factors and the maximum retransmits allowable used in TCP data segment
retransmits. rto_low is the low factor. The default 1. This is a loadtime
attribute.

rto_high

This specifies the TCP Retransmit Time Out high value used in calculating
factors and the maximum retransmits allowable used in TCP data segment
270 RS/6000 SP System Performance Tuning

retransmits. rto_high is the high factor. The default is 64. This is a loadtime
attribute.

sb_max

This specifies the maximum buffer size allowed for a socket. The default is
65,536 bytes. This is a runtime attribute.

send_file_duration

This specifies the cache validation duration for all the file objects that system
call send_file accessed in the Network Buffer Cache. This attribute is in
seconds. The default is 300, which means 5 minutes. 0 means that the cache
will be validated for every access. This attribute only applies to AIX version
4.3.2 or later.

site6_index

This specifies the maximum interface number for site local routing.

sockthresh

This specifies the maximum amount of network memory that can be allocated
for sockets. When the total amount of memory allocated by the net_malloc
subroutine reaches this threshold, the socket and socketpair system calls fail
with an error of ENOBUFS. Incoming connection requests are silently
discarded. Existing sockets can continue to use additional memory. The
sockthresh attribute represents a percentage of the thewall attribute with
possible values of 1 to 100 and a default of 85. sockthresh is a runtime
attribute and only applies to AIX Version 4.3.1 or later.

somaxconn

This specifies the maximum listen backlog. The default is 1024 bytes.
somaxconn is a runtime attribute and only applies to AIX Versions 4.1.5, 4.2
or later.

subnetsarelocal

This determines whether a packet address is on the local network. It is used
by the in_localaddress subroutine. The default value of 1 specifies that
addresses that match the local network mask are local. If the value is 0, only
addresses matching the local subnetwork are local. This is a runtime
attribute.
No Command Man Page 271

tcp_ephemeral_low

This specifies the smallest port number to allocate for TCP ephemeral ports.
The default is 32768. This attribute is available only in AIX 4.3.1 and beyond.

tcp_ephemeral_high

This specifies the largest port number to allocate for TCP ephemeral ports.
The default is 65535. This attribute is available only in AIX 4.3.1 and beyond.

tcp_keepidle

This specifies the length of time to keep the connection active measured in
half seconds. The default is 14,400 half seconds (7200 seconds or 2 hours).
This is a runtime attribute.

tcp_keepinit

This sets the initial timeout value for a tcp connection. This value is defined in
half second units, and defaults to 150, which is 75 seconds. It can be
changed to any value with the -o flag. This is a runtime attribute.

tcp_keepintvl

This specifies the interval, measured in half seconds, between packets sent
to validate the connection. The default is 150 half seconds (75 seconds). This
is a runtime attribute.

tcp_mssdflt

This is the default maximum segment size used in communicating with
remote networks. For AIX Version 4.2.1 or later, tcp_mssdflt is only used if
pth MTU discovery is not enabled or path MTU discovery fails to discover a
path MTU. This is a runtime attribute. The default value is 512.

tcp_ndebug

This specifies the number of tcp_debug structures. The default is 100. This is
a runtime attribute.

tcp_pmtu_discover

This enables or disables path MTU discovery for TCP applications. A value of
0 disables path MTU discovery for TCP applications, while a value of 1
enables it. The default value is 0. This attribute only applies to AIX Version
4.2.1 or later. This is a runtime attribute.
272 RS/6000 SP System Performance Tuning

tcp_recvspace

This specifies the system default socket buffer size for receiving data. This
affects the window size used by TCP. Setting the socket buffer size to 16 KB
(16,384) improves performance over Standard Ethernet and token-ring
networks. The default is a value of 4096; however, a value of 16,384 is set
automatically by the rc.net file or the rc.bsdnet file (if Berkeley-style
configuration is issued).

Lower bandwidth networks, such as Serial Line Internet Protocol (SLIP), or
higher bandwidth networks, such as Serial Optical Link, should have different
optimum buffer sizes. The optimum buffer size is the product of the media
bandwidth and the average round-trip time of a packet.

The tcp_recvspace attribute must specify a socket buffer size less than or
equal to the setting of the sb_max attribute. This is a runtime attribute, but,
for daemons started by inetd, the following command needs to be executed:
stopsrc -s inetd ; startsrc -s inetd

tcp_sendspace

This specifies the system default socket buffer size for sending data. This
affects the window size used by TCP. Setting the socket buffer size to 16 KB
(16,384) improves performance over Standard Ethernet and token-ring
networks. The default is 4096; however, a value of 16,384 is set automatically
by the rc.net file or the rc.bsdnet file (if Berkeley-style configuration is
issued).

Lower bandwidth networks, such as Serial Line Internet Protocol (SLIP), or
higher bandwidth networks, such as Serial Optical Link, should have different
optimum buffer sizes. The optimum buffer size is the product of the media
bandwidth and the average round-trip time of a packet, that is,
optimum_window=bandwidth * average_round_trip_time

The tcp_sendspace attribute must specify a socket buffer size less than or
equal to the setting of the sb_max attribute. This is a runtime attribute, but,
for daemons started by inetd, the following command needs to be executed:
stopsrc -s inetd ; startsrc -s inetd

tcp_timewait

The tcp_timewait option is used to configure how long connections are kept in
the timewait state. It is given in 15 second intervals, and the default is 1.
No Command Man Page 273

tcp_ttl

This specifies the time to live for TCP packets. The default is 60 ticks (100
ticks per minute). This is a runtime attribute.

thewall

This specifies the maximum amount of memory, in kilobytes, that is allocated
to the memory pool. In AIX Version 4.2.1 and earlier, the default value is 1/8
of real memory or 65536 (64 MB), whichever is smaller. In AIX Version 4.3.0,
the default value is 1/8 of real memory or 131072 (128 MB), whichever is
smaller. In AIX Version 4.3.1, the default value is 1/2 of real memory or
131072 (128 MB), whichever is smaller. In AIX Version 4.3.2 and later, the
default value is 1/2 of real memory or 1048576 (1 GB), whichever is smaller.
thewall is a runtime attribute.

udp_ephemeral_low

This specifies the smallest port number to allocate for UDP ephemeral ports.
The default is 32768. This attribute is available only in AIX 4.3.1 and later.

udp_ephemeral_high

This specifies the largest port number to allocate for UDP ephemeral ports.
The default is 65535. This attribute is available only in AIX 4.3.1 and later.

udp_pmtu_discover

This enables or disables path MTU discovery for UDP applications. UDP
applications must be specifically written to utilize path MTU discovery. A
value of 0 (the default) disables the feature, while a value of 1 enables it. This
attribute only applies to AIX Version 4.2.1 or later, and is a runtime attribute.

udp_recvspace

This specifies the system default socket buffer size for receiving UDP data.
The default is 41,600 bytes. This attribute must specify a socket buffer size
less than or equal to the setting of the sb_max attribute. This is a runtime
attribute.

udp_sendspace

This specifies the system default socket buffer size for sending UDP data.
The default is 9216 bytes. This attribute must specify a socket buffer size less
than or equal to the setting of the sb_max attribute. This is a runtime attribute.
274 RS/6000 SP System Performance Tuning

udp_ttl

This specifies the time to live for UDP packets. The default is 30 seconds.
This is a runtime attribute.

udpcksum

This allows UDP checksum to be turned on/off. A value of 0 turns it off, while
a value of 1 turns it on. Default is 1. udpcksum is a runtime attribute.

C.2 Streams Tunable Attributes

The following Streams tunable attributes apply only for AIX Version 4.2 or
later.

lowthresh

This specifies the maximum number of bytes that can be allocated using the
allocb() call for the BPRI_LO priority. When the total amount of memory
allocated by the net_malloc() call reaches this threshold, the allocb() request
for the BPRI_LO priority returns 0. The lowthresh attribute represents a
percentage of the thewall attribute, and you can set its value from 0 to 100.

This is a runtime attribute. Its default value is set to 90 (90 percent of thewall
attribute).

medthresh

This specifies the maximum number of bytes that can be allocated using the
allocb() call for the BPRI_MED priority. When the total amount of memory
allocated by the net_malloc() call reaches this threshold, the allocb() request
for the BPRI_MED priority returns 0. The medthresh attribute represents a
percentage of the thewall attribute and you can set its value from 0 to 100.

This is a runtime attribute. Its default value is set to 95 (95 percent of thewall
attribute).

If you use the tcp_recvspace, tcp_sendspace, udp_recvspace or
udp_sendspace attribute to specify a socket to a buffer size larger than the
sb_max attribute default, you must set the sb_max attribute to an equal or
greater value. Otherwise, the socket system call returns the ENOBUFS
error message when an application tries to create a socket.

Note
No Command Man Page 275

nstrpush

This specifies the maximum number (should be at least 8) of modules that
you can push onto a single Stream.

This is a loadtime attribute. Its default value is set to 8.

psebufcalls

This specifies the maximum number of bufcalls to allocate by Streams. The
Stream subsystem allocates a certain number of bufcall structures at
initialization, so that, when the allocb() call fails, the user can register their
requests for the bufcall(). You are not allowed to lower this value until the
system reboots, at which time it returns to its default value.

This is a runtime attribute. Its default value is set to 20.

pseintrstack

This specifies the maximum size of the interrupt stack allowed by Streams
while running in the offlevel. Sometimes, when a process running other than
the INTBASE level enters into a Stream, it encounters a stack overflow
problem because the interrupt stack size is too small. Setting this attribute
properly reduces the chances of stack overflow problems.

This is a loadtime attribute. Its default value is set to 0x3000.

psetimers

This specifies the maximum number of timers to allocate by Streams. The
Stream subsystem allocates a certain number of timer structures at
initialization so that the Streams driver or module can register its timeout()
calls. You are not allowed to lower this value until the system reboots, at
which time it returns to its default value.

This is a runtime attribute. Its default value is set to 20.

strctlsz

This specifies the maximum number of bytes of information that a single
system call can pass to a Stream to place into the control part of a message
(in an M_PROTO or M_PCPROTO block). A putmsg() call with a control part
exceeding this size will fail with ERANGE.

This is a runtime attribute. Its default value is set to 1024.
276 RS/6000 SP System Performance Tuning

strmsgsz

This specifies the maximum number of bytes of information that a single
system call can pass to a Stream to place into the data part of a message (in
M_DATA blocks). Any write() call exceeding this size is broken into multiple
messages. A putmsg() call with a data part exceeding this size will fail with
ERANGE.

This is a runtime attribute. Its default value is set to 1024.

strthresh

This specifies the maximum number of bytes Streams are normally allowed to
allocate. When the threshold is passed, users without the appropriate
privilege cannot open Streams, push modules, or write to Streams devices,
and ENOSR is returned. The threshold applies only to the output side and
does not affect data coming into the system (for example, the console
continues to work properly). A value of 0 means that there is no threshold.

The strthresh attribute represents a percentage of the thewall attribute and
you can set its value from 0 to 100. The thewall attribute indicates the
maximum number of bytes that can be allocated by Streams and Sockets
using the net_malloc() call. When you change thewall attribute, the threshold
gets updated accordingly.

strturncnt

This specifies the maximum number of requests handled by the currently
running thread for Module or Elsewhere level Streams synchronization.The
Module level synchronization works in such a way that only one thread can
run in the module at any time, and all other threads that try to acquire the
same module will enqueue their requests and leave. After the currently
running thread completes its work, it dequeues all the previously enqueued
requests one by one and invokes them. If there are a large number of
requests enqueued in the list, the currently running thread has to serve
everyone and will always be busy serving others while starving itself. To avoid
this, the currently running thread serves only the strturncnt number of
threads, after which a separate kernel thread wakes up and invokes all the
pending requests.

This is a runtime attribute. Its default value is set to 15.
No Command Man Page 277

C.3 Examples

1. To change the maximum size of the mbuf pool to 3 MB, enter:

no -o thewall=3072

2. To reset the maximum size of the mbuf pool to its default size, enter:

no -d thewall

3. To change the default socket buffer sizes on your system, add the
following lines to the end of the /etc/rc.net file:

/usr/sbin/no -o tcp_sendspace=16384

and issue:

/usr/sbin/no -o udp_recvspace=16384

4. To use an AIX machine as an Internet work router over TCP/IP networks,
enter:

no -o ipforwarding=1

C.4 Related Information

Network Overview for System Management in AIX System Management
Guide: Communications and Networks, GC23-2487.

Monitoring and Tuning Communications I/O in AIX Version 3.2 and 4.1
Performance Tuning Guide, SC23-2365.
278 RS/6000 SP System Performance Tuning

Appendix D. Special Notices

This publication is intended to help RS/6000 SP users, system administrators,
and system engineers understand the available performance monitoring and
system tuning tools on RS/6000 SP and to undertake a detailed performance
analysis. The information in this publication is not intended as the
specification of any programming interfaces that are provided by RS/6000 SP
or POWERparallel System Support Programs. See the PUBLICATIONS
section of the IBM Programming Announcement for RS/6000 SP and
POWERparallel System Support Programs for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood,
NY 10594 USA.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
© Copyright IBM Corp. 1999 279

responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in
other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States, other countries,
or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

ADSTAR AIX
AS/400 AT
CT IBM
LoadLeveler Micro Channel
POWERparallel PowerPC 604
PROFS RS/6000
SP SP2
System/390 3090
400
280 RS/6000 SP System Performance Tuning

Microsoft Corporation in the United States, other countries, or both.

PC Direct is a trademark of Ziff Communications Company in the United
States, other countries, or both and is used by IBM Corporation under
license.

MMX, Pentium and ProShare are trademarks of Intel Corporation in the
United States, other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both
and is licensed exclusively through X/Open Company Limited.

SET and SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC. (For further information, see
www.setco.org/aboutmark.html.)

Other company, product, and service names may be trademarks or service
marks of others.
Special Notices 281

282 RS/6000 SP System Performance Tuning

Appendix E. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

E.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get ITSO
Redbooks” on page 285

• Customizing Performance Toolbox and Performance Toolbox Parallel
Extensions for AIX, SG24-2011

• Understanding IBM RS/6000 Performance and Sizing, SG24-4810

• RS/6000 Performance Tools in Focus, SG24-4989

• Benchmarking in Focus, SG24-5052

• AIX 64-bit Performance in Focus, SG24-5103

• Inside the RS/6000 SP, SG24-5145

• Understanding and Using the SP Switch, SG24-5161

E.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Order a
subscription and receive updates 2-4 times a year.

CD-ROM Title Collection Kit Number
System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbook SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
RS/6000 Redbooks Collection (HTML, BkMgr) SK2T-8040
RS/6000 Redbooks Collection (PostScript) SK2T-8041

RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 1999 283

E.3 Other Publications

These publications are also relevant as further information sources:

• RS/6000 SP Planning Volume 1, Hardware and Physical Environment,
GA22-7280

• RS/6000 Planning Volume 2, Control Workstation and Software
Environment, GA22-7281

• AIX Version 3.2 System Management Guide: Communications and
Networks, GC23-2487

• PSSP: Performance Monitoring Guide and Reference, SA22-7353

• AIX Version 3.2 and 4.1 Performance Monitoring and Tuning Guide,
SC23-2365

• AIX Performance Toolbox/6000 User’s Guide Version 1.2 and 2.1,
SC23-2625

• SP: Managing Shared Disks, SC23-3849

• AIX Performance Tuning Guide, SR28-5930

• IBM System Journal, Vol 34, No. 2, 1995
284 RS/6000 SP System Performance Tuning

How to Get ITSO Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download or order hardcopy/CD-ROM redbooks from the redbooks web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders via e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information for customer may be found at http://www.redbooks.ibm.com/ and for IBM employees at
http://w3.itso.ibm.com/ .

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com / and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees
may also view redbook. residency, and workshop announcements at http://inews.ibm.com /.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 285

IBM Redbook Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
286 RS/6000 SP System Performance Tuning

List of Abbreviations

ACL Access Control List

AIX Advanced Interactive
Executive

API Application
Programming Interface

ARP Address Resolution
Protocol

ATM Asynchronous Transfer
Mode

BIS Boot/Install Server

BSD Berkeley Software
Distribution

CPU Central Processing Unit

CSS Communication
Subsystem

CW Control Workstation

DB Database

FDDI Fiber Distributed Data
Interface

FIFO First-In First-Out

GB Gigabytes

GL Group Leader

GPFS General Purpose File
System

GVG Global Volume Group

HiPS High Performance
Switch

HSD Hashed Shared Disk

IBM International Business
Machines Corporation

ICMP Internet Control
Message Protocol

IP Internet Protocol

ISO International Standards
Organization
© Copyright IBM Corp. 1999
ITSO International Technical
Support Organization

JFS Journaled File System

LAN Local Area Network

LED Light Emitting Diode

LVM Logical Volume
Manager

MB Megabytes

MIB Management
Information Base

MPI Message Passing
Interface

MPL Message Passing
Library

MPP Massive Parallel
Processors

MTU Maximum Transmission
Unit

NFS Network File System

NIM Network Installation
Manager

NSB Node Switch Board

NSC Node Switch Chip

OID Object ID

ODM Object Data Manager

PID Process ID

PROFS Professional Office
System

PSSP Parallel System
Support Programs

PTC Prepare To Commit

PTPE Performance Toolbox
Parallel Extensions

PTX/6000 Performance
Toolbox/6000
287

RAM Random Access
Memory

RCP Remote Copy Protocol

RPQ Request for Product
Quotation

RVSD Recoverable Virtual
Shared Disk

SDR System Data
Repository

SNMP Simple Network
Management Protocol

SP RS/6000 SP
288 RS/6000 SP System Performance Tuning

Index

Symbols
/etc/hosts 87
/etc/rc.net 143, 216
/tftpboot/tuning.cust 143, 163, 165, 177, 191, 216,
219, 221
/usr/lpp/ssp/css/chgcss 126
/usr/lpp/ssp/install/tuning.default 58

A
activity counters 157
adapter queue 21, 61, 62, 141
Address Resolution Protocol 143
application

ADSM 62, 147
data mining 62

application programming interface 223, 229
application server 234
application type

commercial 256
commercial database 257
technical 256

arp
calculating entries 144
calculation 144

Ascend 257
ATM

see asynchronous transfer mode
atmstat 75

C
central processing unit

active 175
affinity 179
allocation 177
attention 176
cache 179
constrained 167
context switch 179
disable 175
dispatch 172, 177
enable 175
free 172
high context switching 179
idle 167, 172
low utilization 174
© Copyright IBM Corp. 1999
monitor 227
multiple 176
overload 173
penalty decay 178
penalty value 178
performance problem 221
pipeline 179
potential 172
priority 178
real time 169
requirement 169
resource 169, 172
resource requirement 212
run queue 172
scheduler 177
service time 209, 210, 211
timeslice 178, 179
usage 167, 170
utilization 167, 169, 170, 171, 172, 206
utilization efficient 173
wait 167, 172, 174

chdev parameter
maxuproc 142
xmt_que_size 142

chgcss parameter
rpoolsize 22, 111, 126, 137
spoolsize 22, 111, 126, 137
xmt_que_size 22

classic database 10
client server 222
cluster technology 229
command

chdev 142
chgcss 80, 126
fddistat 75
ifconfig 149
lsattr 142
netstat 79, 134, 138
no 21
tokstat 75
vdidl3 83

commercial environment 1
consolidated system 10, 46
control workstation 8
CPU

see central processing unit
289

D
database server 234
dedicated task 234
dependent node 257
device

request 207
disk activity monitor 228
distributed applications 1
distributed databases 1

E
environment

Commercial Database 59
consolidated 10, 46
homogenous 10
homognenous 46
parallel 86
parallel database 62
Scientific and Technical 59
server

typical 63
Server Configuration 59
Software Development 59

Escon
DATABUFFERSIZE 88
Interface MTU 88

exception 207
external server 136

F
file

access 187
active 186
block 191
block allocate 189
block deallocated 189
block retrieve 191
contiguous 189
fragmentation 189
partition 189
placement 180, 181, 182

remote 182
read ahead 191
reorganize 189
segment 183
sequential access 191
translate inode 184

file placement 183

location 183
multiple disks 182
optimal 183
separate 184

file segment
active 184

file server 182, 234
file system

efficiency 191
fragmented 191
rebuild 191

FLIH
see first level interrupt handler

frame
characteristics 7
frame supervisor card 8
low-cost 7

G
gateway 234
graphical user interface 223
GUI

see graphical user interface

H
hardware co-existence 258
high node 257
homogeneous system 46

I
I/O

see input/output
initial settings

alternate 58
commercial 58
development 58
scientific & technical 58

input/output
activity 183
asynchronous 194
asynchronous operation 194
backlog 193
demanding 193
dependency 180
disk activity 183
exceed pending 193
investigating 179
290 RS/6000 SP System Performance Tuning

limit 193
monitor kernel 228
pacing 193
pacing disable 193
parameter 191
pending 193
performance 179, 187
performance problem 221
rapid 193

interrupt 207
first level interrupt handler 207
generate 208
handling 208
network 209
second level interrupt handler 207, 208, 209

K
kproc

asynchronous 194
maximum 194
start 194

L
logical volume 180, 181, 183

active 185, 186
fragmentation 190
location 183
multiple disks 180, 182
placement 180, 190
reorganize 190
reside 181
span 180
split 182
spread 181
utilization 187

M
MAC

address translation 143
memory 155

additional 162, 165
allocate 221
application 162
application instance 162
application shared 162
available 162, 163
available threshold 163

buffer 220
client 160
computational 164
contention 160
control 166
data region 164
extended 158
file 164
footprint 162
free 160, 163
free list 156, 164
free maximum 164
free minimum 163, 164
in use 160
installed 162
insufficient 155
kernel 22
limit 162, 216
management 164
minimum 162
monitor 228
over committed 156, 165, 166
overflow 221
page 158, 179

reduce 163
page faults 166
page frame 163
page in rate 156
page reclaim 157
page scan 157
page space 158, 161, 165
page steal 157, 163, 165
page stolen 164
peek 165
performance problem 221
persistent 160
physical 162, 165
pinned 160, 221
process 159, 161
program code region 164
real 162, 163
reclaim 166
release 163
repage 164, 166
requirement 162, 163, 165
reuse 164
stack region 164
state 160
steal 164
291

system 160, 162
temporary 221
thrashing 164, 165
threshold 165
total 160
transitory 164
upper bound 216
usage 159, 160
virtual 158
working set 160

memory bandwidth 256
MTU 136

definition 21
see maximum transmission unit

N
Nagle Alogorithmn 133
network

activity 205
adapter 195, 200, 209, 217, 220
adapter attributes 215
adapter attributes check 215
adapter efficient 218
adapter inefficient 218
adapter performance problem 222
adapter settings 214
adapter statistic 196
adapter traffic 199
adapter utilization 195
address resolution 217
address resolution protocol 216, 217
address resolution protocol response 217
address resolution protocol table 217
asynchronous transfer mode 195, 197
attribute 215, 216, 217, 220, 221
attribute display 215
bandwidth 196, 200
bottle neck 210
broadcast network 9
buffer 216
buffer request 201
central processing unit 209
central processing unit requirement 212
check attribute 215
collision 200
collision algorithm 200
communication 194, 216
configuration 195

connection 202, 216
conversation 205
data throughput 209
dedicated 197
default attribute 215
default maximum transmission 218
degradation 196
destination 218
device driver 195
device driver report 209, 210, 211
device driver utilization 196
discover maximum transmission 218
enhancement 218
estimate round trip 219
Ethernet 23
ethernet 195, 196
fiberoptic distributed data interface 195
forward address 217
forward packet 218
gateway 217
global parallel file system 197
hardware 194
high performance 218
incoming packet 200
input queue 217
iptrace 136
largest buffer 217
link 196
load 199, 200
local area 217
local area address 217
mask 217
maximum packet 217
maximum transmission size 205, 210
maximum transmission unit 200, 214, 217
memory 201, 216
memory limit 216
memory pool 197, 199, 201, 221
memory pool size 214
monitor 228
monitor traffic 203
optimal 216
optimal attribute 216
option 215, 218
overflow 221
overload 196, 200
packet 200, 210, 211, 217, 218
packet collision 200
packet error 200
292 RS/6000 SP System Performance Tuning

packet fragmentation 218
packet receive 203
packet retransmission 200
packet sent 200, 203
packet size 210
parameter 194, 215
performance 216, 218, 220
performance problem 205, 222
pool size 221
protocol 196, 202, 211
receive 221
receive buffer 216
request 201
resource 212
round trip 219
routing table 218
send 221
send buffer 216
sequence 219
service 206
set attribute 215
snap shot 205
socket 216
socket report 211, 212
socket service request 211
software 194
SP switch 23
stable 216
statistic 199
switch 194, 195, 197, 218
switch adapter 221
switch attribute 220
switch bandwidth 219
switch parameter 221
switch restart 221
switch type 197
theoretical maximum 196
throughput 200
time stamp 219
Token Ring 23
token ring 195, 197
total traffic 199
traffic 209, 210, 211, 213, 233
traffic volume 199
transfer rate 196
transmission 205, 210
transmission control protocol 216, 218
transmit queue length 214
trouble shooting 205

tuning 210
UNIX domain protocol 216
upper limit 218
utilization 205
window size 218

network file system 213
attribute 219
attribute list 219
default attribute 219
high performance 220
inoperative 219
load 213
maximum buffer 220
memory buffer 220
optimal attribute 219, 220
performance 220
performance enhancement 220
receive buffer 220
report 213, 214
send buffer 220
service time 214
set attribute 219
socket 220
socket buffer 220
stable 219
switch 220
transmission control protocol 220

network file systemoptimal attribute 219
NFS

see network file system
NIM 9
no variable

arptab_bsiz 143, 145
arptab_nb 144
ipforwarding 88
rfc1323 136
sb_max 23
tcp_mssdflt 88
tcp_pmtu_discover 137
tcp_recvspace 62
tcp_sendspace 62
thewall 23
udp_pmtu_discover 137

node
characteristics 8
customization 58
gateway 141
identical workload 46
installation 58
293

migration 58
node selection

capacity 258
performance 259

P
page

performance problem 222
partition

physical 180
performance 229

acceptable 179
aggregate value 239, 240
analysis 229
analyze 223
application 162, 176
application programming interface 223
average value 229, 231, 233
characteristic 234
collection 240
data 226
data stream 222
definable value 229
degrade 203
enhancement 220
gain 162, 181
graphical 222
hidden value 228
high 218, 220
impact 234
information 228
input/output 187
key element 228
limiting 187
local monitor 222, 223
manage 224, 234, 237
monitor 222, 223, 224
negative 163
network 205
network monitor 222, 223
network problem 213
nonfunctional 162
overhead 234
positive 163
problem 221
PTX/6000 222
reduce 176
reference 234

relationship 226
remote monitor 222, 223
report 234
resource 234
simple network management protocol 223
single point monitor 223, 224
statistic 239, 240
system 222
toolbox 222
tune 222
unacceptable 179, 228
user interface 223
value 228
value stack 226

performance monitor 229, 239, 240
access 229
administer 231
archive 229, 232
central coordinator 240
centralize 231
collect 239
collection 233
complex 238, 240
console 226, 227
coordinate 233
critical 228
data collection 232, 233
data manager 240
display 226
distribute 231
frame 226
group 234
hierarchy 231, 240
indication 234
instrument 226
limitation 231
manager 226
node 231
objects 226
overhead 239, 241
real time 229
reference point 234
report 233, 234
single point 229
statistic 226, 229
summary 231, 234
system 228
template 226
throughput 228
294 RS/6000 SP System Performance Tuning

value 226
xmperf 226

performance monitoring 1
performance problem

search 213
performance tuning

objectives xv, 45
perspectives 229, 237
physical inventory 11
physical volume 183, 190

active 186
utilization 188

process
active 166
alter thread priority 177
background 176
central processing unit 170
current 159
delay 193
dispatch 178
dynamic thread priority 177
execution 178
fixed thread priority 176, 177
foreground 176
increase thread priority 176
infinite loop 166
kernel 194
memory 159
penalize 193
penalty thread priority 177
resource requirement 222
restart 179
resume 193
resumed 179
running 163
scheduler 165, 172
scheduler algorithm 166
sequence 176
status 159
suspend 165, 166, 193
terminating 163
thread 177
thread priority 176, 178

base 176
timeslice 178
unrunnable 178
usage counter 177
wait 193
working set 164

PTPE 223, 229, 239, 241
application programming interface 229, 232
archive 229
central coordinator 231, 233, 234
data collection 237
data manager 231, 233
disable monitor 240
enable monitor 239
hierarchy 231, 237
hierarchy classification 231
hierarchy definition 237, 238
hierarchy role 231
initialize 238
install 229
installation 230
manager 234
monitor group 230
monitor hierarchy 233, 234
node group 237
node installation 230
nonparticipant 233
participant 240
participate 241
performance monitor 237
prerequisites 229
reporter 233
responsibility 236
scalable 229

PTX/6000 224, 229
area graph 226
bar graph 226
extension 229, 239
graphical user interface 227, 240
install agent 224
install server 224
installation prerequisite 224
library 240
line graph 226
pie chart 226
server 224
skyline graph 226
speedometer 226
state bar 226
state light 226

R
response 165
router
295

GRF 141
routing

gateway 86
switch 86

RS 6000 SP
Distributed Memory Computer 6
Parallel Architecture Machine 6

S
S70 attached server 257
scheduler

backlog 173
load control 165
runable work 172

serial connection 8
serial line 10, 257
setsockopt 140
simple network management protocol 223
single parent multiple child 138
SLIH

see second level interrupt handler
SMP

see symmetrical multiprocessor
SNMP

see simple network management protocol
software

AIX 9
PSSP 9

SP
adding or changing subsystems 45
DNS 86
monitoring 45
network topology 86

SP Ethernet 10, 257
SP switch

changing MTU size 135
SP tuning

adapter queue overflows 75, 76
arp cache 143
Control Workstation 141
Nagle 133
Server Configuration 63
Software Development 59

storage
center region 180
inner edge region 180
inner middle region 180
outer middle region 180

region 180, 182
outer edge 180

strategy 180
switch

channel 201
characteristics 8
Intermediary Switch Board 8
Intermediate Switch Board 9
microcode 199
non-blocking nature 9
optimal 201
performance problem 222
receive pool 199
see also network switch

symmetrical multiprocessor 154, 175, 176
synchronous 178
system

activity 234
crash 219
dedicated 166
disparate 195
documentation 234
inoperative 215
overhead 224
performance 174
production 176
resource 223
resource statistic 223
throughput 165, 179, 187, 194
tight coupling 195
trace 205

system partitioning 257

T
TCP

see network transmission control protocol
TCP/IP

application layer 23
performance 59
transport layer 23

tcp_mdssdflt 136
tcp_pmtu_discover 141
tcp_recvspace

optimal settings 137
tcp_sendspace

optimal settings 137
technical applications 256
thin node 256
296 RS/6000 SP System Performance Tuning

thread
see process thread

tool 153
tuning 153

aggressive 155
bias 206
commands 153
commercial 155, 166, 167
compromise 154, 155
conservative 154
cooperatively 155
efficiency 191
input/output 191
isolate 174
link 197
multiuser 166
network 195, 210, 215
option 167
pessimistic 218
profile 154
representative 156
scientific 154, 155, 166, 167
segregate 155
short memory 165
subsystem 153
template 155
trade 191
unbalance 167
verify 205

U
UDP

see UNIX domain protocol
uniprocessor 176

V
vdidl3

allocd 84
bkt 84
comb & freed 84
fail 84
free 84
split 84
success 84

virtual memory
address space 179
translation lookaside buffers 179

virtual memory manager 156, 163, 179, 187, 191

efficient access 187
monitor 227
overhead 159
parameter 163, 165
read ahead 191

VMM
see memory

W
wide node 256

X
xmt_que_size

recommended setting 79
297

298 RS/6000 SP System Performance Tuning

© Copyright IBM Corp. 1999 299

ITSO Redbook Evaluation

RS/6000 SP System Performance Tuning
SG24-5340-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

Printed in the U.S.A.

SG24-5340-00

R
S

/6000
S

P
S

ystem
P

erform
ance

T
uning

S
G

24
-53

4
0-0

0

	Contents
	Figures
	Tables
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. Introduction
	1.1 System Performance Tuning
	1.2 Why Tuning?
	1.3 When to Tune?
	1.4 How Much Tuning Is Enough?

	Chapter 2. RS/6000 SP Overview
	2.1 SP Topology Overview
	2.1.1 SP Hardware
	2.1.2 SP Software

	2.2 Communication Paths
	2.3 System Partitioning
	2.4 Homogenous versus Consolidated System
	2.5 Logical versus Physical View

	Chapter 3. Network Topology
	3.1 The Ethernet Network
	3.2 The Switch Network

	Chapter 4. TCP/IP Overview
	4.1 Communication Subsystem Memory Management
	4.2 Socket Layer
	4.3 UDP and TCP Functions
	4.3.1 UDP Layer
	4.3.2 TCP Layer

	4.4 Internet Protocol Layer
	4.5 LAN Adapters and Device Drivers

	Chapter 5. SP Performance Tuning Cycle
	Chapter 6. SP Network Tunables
	6.1 Initial Considerations
	6.1.1 General Tuning Recommendations
	6.1.2 Consolidated System Challenges
	6.1.3 System Topology Considerations

	6.2 AIX Network Tunables
	6.2.1 TCP Maximum Segment Size (MSS)
	6.2.2 Subnetting and the subnetsarelocal

	6.3 SP System-Specific Tuning Recommendations
	6.3.1 Managing Tunable SP Parameters
	6.3.2 Initial Settings of SP Tunables

	6.4 Tuning the SP Network for Specific Workloads
	6.4.1 Tuning for Development Environments
	6.4.2 Tuning for Scientific and Technical Environments
	6.4.3 Tuning for Commercial and Database Environments
	6.4.4 Tuning for Server Environments
	6.4.5 Summary of Workload Tunables

	Chapter 7. Adapter Tuning
	7.1 Maximum Transmission Unit (MTU)
	7.2 Maximum Segment Size (MSS)
	7.3 TCP Data Flow
	7.4 TCP Sliding Window
	7.5 Adapter Queue Size
	7.5.1 Transmit and Receive Queues
	7.5.2 Displaying Adapter Queue Settings
	7.5.3 Changing Adapter Settings
	7.5.4 Adapter Tuning Recommendations

	7.6 Switch Adapter Tuning
	7.6.1 Switch Adapter Pools
	7.6.2 Switch Pool Allocation
	7.6.3 Switch Buffer Pool Allocation Considerations
	7.6.4 Sizing Send and Receive Pool Requirements
	7.6.5 Sample Switch Send Pool Size Estimate
	7.6.6 Reducing Send/Receive Pool Requirements

	7.7 SP Ethernet Tuning
	7.8 Token-Ring Performance Tuning Recommendations
	7.9 FDDI Performance Tuning Recommendations
	7.10 ATM Performance Tuning Recommendations
	7.11 HIPPI Performance Tuning Recommendations
	7.12 Escon Interface Tuning

	Chapter 8. Global File Systems Tuning
	8.1 Network File System Tuning on the SP
	8.1.1 NFS Overview
	8.1.2 Large�Scale Environment Considerations
	8.1.3 NFS Troubleshooting
	8.1.4 Checklist for NFS Tuning
	8.1.5 Dropped Packets
	8.1.6 Check for NFS UDP Socket Buffer Overflows
	8.1.7 Number of NFS Daemons
	8.1.8 The nfso Command
	8.1.9 Mount Options That Affect Performance
	8.1.10 Configuring Server Disk Usage
	8.1.11 Network Locking Performance Implications
	8.1.12 NFS Version 3 Improvements
	8.1.13 How NFS v3 and TCP Work Together

	8.2 Virtual Shared Disk Tuning
	8.2.1 Tunable Parameters Related to VSD
	8.2.2 Logical Volume Manager Tuning Considerations
	8.2.3 SP Switch Considerations
	8.2.4 Buddy Buffers
	8.2.5 VSD Buffer Allocation
	8.2.6 The Cache Buffer
	8.2.7 Maximum I/O Request Size
	8.2.8 Request Blocks
	8.2.9 Virtual Shared Disk pbufs
	8.2.10 VSD Statistics
	8.2.11 Tuning Virtual Shared Disk Performance
	8.2.12 Virtual Shared Disk Tuning Recommendations

	8.3 General Parallel File System Tuning
	8.3.1 Planning for GPFS
	8.3.2 Configuration Considerations
	8.3.3 Estimating Node Count
	8.3.4 GPFS Use of Virtual Shared Disks
	8.3.5 Switch Tuning for GPFS
	8.3.6 GPFS Performance Tuning
	8.3.7 Additional GPFS Considerations
	8.3.8 GPFS Performance and Scaling
	8.3.9 Applications and Performance

	Chapter 9. Common SP Performance Problems
	9.1 The Nagle Algorithm
	9.2 External Server Considerations
	9.3 Single-Server Multiple-Client Node Problems
	9.4 Gateway or Router Node Problems
	9.5 Tuning the Control Workstation
	9.5.1 Change Control Workstation Maximum Default Processes
	9.5.2 Change the Control Workstation Tunables

	9.6 ARP Cache Tuning
	9.6.1 Updating the ARP Cache Size
	9.6.2 Determining the ARP Tuning Settings
	9.6.3 Detecting ARP Thrashing
	9.6.4 ARP Cache Problem Determination

	Chapter 10. ADSTAR Distributed Storage Manager (ADSM) Tuning
	10.1 SP Client Node Network Tunables
	10.2 SP Client Node ADSM Tunables
	10.3 SP ADSM Server Node Tunables
	10.4 Escon Gateway Node Tunables
	10.5 MVS ADSM Server Tunables

	Chapter 11. IBM Performance Tools
	11.1 Overview
	11.2 Managing Memory Resources
	11.2.1 Monitoring Memory with vmstat
	11.2.2 Monitoring Memory with sar
	11.2.3 Monitoring Memory with lsps
	11.2.4 Monitoring Memory with ps
	11.2.5 Monitoring Memory with svmon
	11.2.6 Determining Memory Requirements with rmss
	11.2.7 Tuning Memory with vmtune
	11.2.8 Tuning Memory with schedtune

	11.3 Managing CPU Resources
	11.3.1 Monitoring the CPU with vmstat
	11.3.2 Monitoring the CPU with time
	11.3.3 Monitoring the CPU Using ps
	11.3.4 Monitoring the CPU with sar
	11.3.5 Monitoring the CPU with iostat
	11.3.6 Checking Active CPUs Using cpu_state
	11.3.7 Managing CPU Usage with nice and renice
	11.3.8 Managing CPU Utilization with schedtune

	11.4 Managing Input/Output Resources
	11.4.1 Monitoring I/O Using iostat
	11.4.2 Monitoring I/O Using lslv
	11.4.3 Monitoring I/O Using fileplace
	11.4.4 Monitoring I/O Using filemon
	11.4.5 Managing Fragmentation
	11.4.6 Tuning Kernel I/O Parameters

	11.5 Managing Network Resources
	11.5.1 Monitoring the Network Using Adapter Statistics
	11.5.2 Monitoring the Switch with vdidl2 or vdidl3
	11.5.3 Monitoring the Network with netstat
	11.5.4 Monitoring Network Traffic Using iptrace
	11.5.5 Monitoring the Network Using netpmon
	11.5.6 Checking Network Adapter Settings Using lsattr
	11.5.7 Tuning Network Parameters Using no
	11.5.8 Tuning NFS Network Parameters Using nfso
	11.5.9 Tuning Network Switch Parameters Using chgcss

	11.6 Investigation
	11.7 Performance Toolbox for AIX (PTX/6000)
	11.7.1 PTX/6000 Installation
	11.7.2 Using PTX/6000 to Monitor an RS/6000 Cluster

	11.8 Performance Toolbox Parallel Extensions (PTPE)
	11.8.1 PTPE Installation
	11.8.2 Using PTPE to Monitor an RS/6000 SP Cluster

	Chapter 12. Non-IBM Performance Tools
	12.1 The Real Time IBM RS/6000 AIX System Monitor
	12.2 POWER2 Hardware Performance Monitoring
	12.3 NetPerf
	12.3.1 TCP Stream Performance
	12.3.2 UDP Stream Performance
	12.3.3 TCP Request/Response Performance
	12.3.4 UDP Request/Response Performance

	12.4 ttcp Program
	12.5 Other Commercial Performance Monitor Sources

	Appendix A. Performance Problem Checklist
	Appendix B. Hardware Details
	B.1 Node Types
	B.2 Roles of Nodes
	B.3 Communication Paths
	B.4 System Partitioning
	B.5 Node Selection Process

	Appendix C. No Command Man Page
	C.1 Network Attributes
	C.2 Streams Tunable Attributes
	C.3 Examples
	C.4 Related Information

	Appendix D. Special Notices
	Appendix E. Related Publications
	E.1 International Technical Support Organization Publications
	E.2 Redbooks on CD-ROMs
	E.3 Other Publications

	How to Get ITSO Redbooks
	IBM Redbook Fax Order Form

	List of Abbreviations
	Index
	ITSO Redbook Evaluation

